TY - JOUR
T1 - 3D RECONSTRUCTION of UNSTABLE UNDERWATER ENVIRONMENT with SFM USING SLAM
AU - Jeon, I.
AU - Lee, I.
N1 - Publisher Copyright:
© 2020 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives.
PY - 2020/8/6
Y1 - 2020/8/6
N2 - The underwater environment has substantial properties for underwater research such as marine archaeology, monitoring coral reefs, and shipwrecks. SfM, as a major step of photogrammetry, has been widely used in the field. For a high 3D construction quality, images must have a clear visual sight environment and known orientations of the images. However, underwater images have various types of visual disturbances, but also GPS/INS, commonly used on the ground, are not accepted. Finding more feature points or using more images for SfM are solutions to the problems. However, these methods take high computational costs. An alternative to this problem is to provide the known orientations of the images. For a solution to provide known orientations of images, the presented method in this study uses visual SLAM that processes the localization of a vehicle system and mapping of surroundings. The experiment aims to verify whether SLAM improves the quality of underwater 3D reconstruction and the computation efficiency of SfM. We examine the two aqualoc datasets with the results of the number of cloud points, SfM processing time, and the number of matched images/total images and mean reprojection errors. The outcome shows SLAM-determined orientations improved the quality of 3D reconstruction and the computation efficiency of SfM with results of the increased number of point clouds and the decreased processing time.
AB - The underwater environment has substantial properties for underwater research such as marine archaeology, monitoring coral reefs, and shipwrecks. SfM, as a major step of photogrammetry, has been widely used in the field. For a high 3D construction quality, images must have a clear visual sight environment and known orientations of the images. However, underwater images have various types of visual disturbances, but also GPS/INS, commonly used on the ground, are not accepted. Finding more feature points or using more images for SfM are solutions to the problems. However, these methods take high computational costs. An alternative to this problem is to provide the known orientations of the images. For a solution to provide known orientations of images, the presented method in this study uses visual SLAM that processes the localization of a vehicle system and mapping of surroundings. The experiment aims to verify whether SLAM improves the quality of underwater 3D reconstruction and the computation efficiency of SfM. We examine the two aqualoc datasets with the results of the number of cloud points, SfM processing time, and the number of matched images/total images and mean reprojection errors. The outcome shows SLAM-determined orientations improved the quality of 3D reconstruction and the computation efficiency of SfM with results of the increased number of point clouds and the decreased processing time.
KW - 3D Reconstruction
KW - SfM
KW - Underwater Photogrammetry
KW - Underwater SLAM
KW - Visual SLAM
UR - http://www.scopus.com/inward/record.url?scp=85091112623&partnerID=8YFLogxK
U2 - 10.5194/isprs-archives-XLIII-B2-2020-957-2020
DO - 10.5194/isprs-archives-XLIII-B2-2020-957-2020
M3 - Conference article
AN - SCOPUS:85091112623
SN - 1682-1750
VL - 43
SP - 957
EP - 962
JO - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
JF - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
IS - B2
T2 - 2020 24th ISPRS Congress - Technical Commission II
Y2 - 31 August 2020 through 2 September 2020
ER -