A DO- and pH-based early warning system of nitrification inhibition for biological nitrogen removal processes

Seil Hong, Il Choi, Byung Jin Lim, Hyunook Kim

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

In Korea, more than 80% of municipal wastewater treatment plants (WWTPs) with capacities of 500 m3·d-1 or more are capable of removing nitrogen from wastewater through biological nitrification and denitrification processes. Normally, these biological processes show excellent performance, but if a toxic chemical is present in the influent to a WWTP, the biological processes (especially, the nitrification process) may be affected and fail to function normally; nitrifying bacteria are known very vulnerable to toxic substances. Then, the toxic compound as well as the nitrogen in wastewater may be discharged into a receiving water body without any proper treatment. Moreover, it may take significant time for the process to return back its normal state. In this study, a DO- and pH-based strategy to identify potential nitrification inhibition was developed to detect early the inflow of toxic compounds to a biological nitrogen removal process. This strategy utilizes significant changes observed in the oxygen uptake rate and the pH profiles of the mixed liquor when the activity of nitrifying bacteria is inhibited. Using the strategy, the toxicity from test wastewater with 2.5 mg·L-1 Hg2+, 0.5 mg·L-1 allythiourea, or 0.25 mg·L-1 chloroform could be successfully detected.

Original languageEnglish
Pages (from-to)16334-16352
Number of pages19
JournalSensors
Volume12
Issue number12
DOIs
StatePublished - Dec 2012

Keywords

  • Biological nitrogen removal processes
  • DO
  • Early warning system
  • Nitrification inhibition
  • pH

Fingerprint

Dive into the research topics of 'A DO- and pH-based early warning system of nitrification inhibition for biological nitrogen removal processes'. Together they form a unique fingerprint.

Cite this