TY - JOUR
T1 - A framework for detecting vehicle occupancy based on the occupant labeling method
AU - Lee, Jooyoung
AU - Byun, Jihye
AU - Lim, Jaedeok
AU - Lee, Jaeyun
N1 - Publisher Copyright:
© 2020 Jooyoung Lee et al.
PY - 2020
Y1 - 2020
N2 - High-occupancy vehicle (HOV) lanes or congestion toll discount policies are in place to encourage multipassenger vehicles. However, vehicle occupancy detection, essential for implementing such policies, is based on a labor-intensive manual method. To solve this problem, several studies and some companies have tried to develop an automated detection system. Due to the difficulties of the image treatment process, those systems had limitations. This study overcomes these limits and proposes an overall framework for an algorithm that effectively detects occupants in vehicles using photographic data. Particularly, we apply a new data labeling method that enables highly accurate occupant detection even with a small amount of data. The new labeling method directly labels the number of occupants instead of performing face or human labeling. The human labeling, used in existing research, and occupant labeling, this study suggested, are compared to verify the contribution of this labeling method. As a result, the presented model's detection accuracy is 99% for the binary case (2 or 3 occupants or not) and 91% for the counting case (the exact number of occupants), which is higher than the previously studied models' accuracy. Basically, this system is developed for the two-sided camera, left and right, but only a single side, right, can detect the occupancy. The single side image accuracy is 99% for the binary case and 87% for the counting case. These rates of detection are also better than existing labeling.
AB - High-occupancy vehicle (HOV) lanes or congestion toll discount policies are in place to encourage multipassenger vehicles. However, vehicle occupancy detection, essential for implementing such policies, is based on a labor-intensive manual method. To solve this problem, several studies and some companies have tried to develop an automated detection system. Due to the difficulties of the image treatment process, those systems had limitations. This study overcomes these limits and proposes an overall framework for an algorithm that effectively detects occupants in vehicles using photographic data. Particularly, we apply a new data labeling method that enables highly accurate occupant detection even with a small amount of data. The new labeling method directly labels the number of occupants instead of performing face or human labeling. The human labeling, used in existing research, and occupant labeling, this study suggested, are compared to verify the contribution of this labeling method. As a result, the presented model's detection accuracy is 99% for the binary case (2 or 3 occupants or not) and 91% for the counting case (the exact number of occupants), which is higher than the previously studied models' accuracy. Basically, this system is developed for the two-sided camera, left and right, but only a single side, right, can detect the occupancy. The single side image accuracy is 99% for the binary case and 87% for the counting case. These rates of detection are also better than existing labeling.
UR - http://www.scopus.com/inward/record.url?scp=85097818302&partnerID=8YFLogxK
U2 - 10.1155/2020/8870211
DO - 10.1155/2020/8870211
M3 - Article
AN - SCOPUS:85097818302
SN - 0197-6729
VL - 2020
JO - Journal of Advanced Transportation
JF - Journal of Advanced Transportation
M1 - 8870211
ER -