A hybrid reactor system comprised of non-thermal plasma and Mn/natural zeolite for the removal of acetaldehyde from food waste

Min Young Song, Hae Won Ryu, Sang Chul Jung, Jihyeon Song, Byung Joo Kim, Young Kwon Park

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

The degradation of low concentrations of acetaldehyde while using a non-thermal plasma (NTP)/catalyst hybrid reactor system was investigated while using humidified air at ambient temperature. A series of highly active manganese-impregnated natural zeolite (Mn/NZ) catalysts were synthesized by the incipient wetness method using sonication. The Mn/NZ catalysts were analyzed by Brunauer-Emmett-Teller surface area measurements and X-ray photoelectron spectroscopy. The Mn/NZ catalyst located at the downstream of a dc corona was used for the decomposition of ozone and acetaldehyde. The decomposition efficiency of ozone and acetaldehyde was increased significantly using the Mn/NZ catalyst with NTP. Among the various types of Mn/NZ catalysts with different Mn contents, the 10 wt.% Mn/NZ catalyst under the NTP resulted the highest ozone and acetaldehyde removal efficiency, almost 100% within 5 min. Moreover, this high efficiency was maintained for 15 h. The main reason for the high catalytic activity and stability was attributed to the high dispersion of Mn on the NZ made by the appropriate impregnation method using sonication. This system is expected to be efficient to decompose a wide range of volatile organic compounds with low concentrations.

Original languageEnglish
Article number389
JournalCatalysts
Volume8
Issue number9
DOIs
StatePublished - 10 Sep 2018

Keywords

  • Acetaldehyde
  • Manganese-impregnated natural zeolite
  • Non-thermal plasma/catalyst hybrid reactor system
  • Odor from food waste

Fingerprint

Dive into the research topics of 'A hybrid reactor system comprised of non-thermal plasma and Mn/natural zeolite for the removal of acetaldehyde from food waste'. Together they form a unique fingerprint.

Cite this