A new method for better portfolio investment: A case of the Korean stock market

Cheoljun Eom, Jong Won Park

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

In this study, a method is devised to estimate a correlation matrix capable of constructing a well-diversified portfolio by the Markowitz mean-variance (MV) optimization function (MVOF), after which evidence is presented to empirically prove that the proposed method effectively reduces the sensitivity of portfolio output caused by the error of input variables, such as the mean and standard deviation of stocks in a portfolio. The proposed method removes the property of a market factor included in the sample correlation matrix through random matrix theory. The results demonstrate the comparative advantage of the proposed method in effectively reducing the sensitivity on both the estimation error and the prediction error from the mean and standard deviation. In particular, this comparative advantage is dependent on the striking reduction of portfolio risk gained by constructing the well-diversified portfolio. The proposed method also achieves high investment performance in the risk-return domain, and is particularly stronger in the unstable situation of either a market crash or a higher-risk portfolio. Consequently, this study offers new insight into how to enhance the practical applicability of the MVOF by controlling the property of the market factor in the sample correlation matrix.

Original languageEnglish
Pages (from-to)213-231
Number of pages19
JournalPacific Basin Finance Journal
Volume49
DOIs
StatePublished - Jun 2018

Keywords

  • Correlation matrix
  • Mean-variance portfolio optimization
  • Non-market correlation matrix
  • Random matrix theory
  • Sensitivity test
  • Simulation experiment

Fingerprint

Dive into the research topics of 'A new method for better portfolio investment: A case of the Korean stock market'. Together they form a unique fingerprint.

Cite this