Abstract
Recently, data-driven decision-making has attracted great interest; this requires high-quality datasets. However, real-world datasets often feature missing values for unknown or intentional reasons, rendering data-driven decision-making inaccurate. If a machine learning model is trained using incomplete datasets with missing values, the inferred results may be biased. In this case, a commonly used technique is the missing value imputation (MVI), which fills missing data with possible values estimated based on observed values. Various data imputation methods using machine learning, statistical inference, and relational database theories have been developed. Among them, conventional machine learning based imputation methods that handle tabular data can deal with only numerical columns or are time-consuming and cumbersome because they create an individualized predictive model for each column. Therefore, we have developed a novel imputational neural network that we term the Denoising Self-Attention Network (DSAN). Our proposed DSAN can deal with tabular datasets containing both numerical and categorical columns; it considers discretized numerical values as categorical values for embedding and self-attention layers. Furthermore, the DSAN learns robust feature expression vectors by combining self-attention and denoising techniques, and can predict multiple, appropriate substituted values simultaneously (via multi-task learning). To verify the validity of the method, we performed data imputation experiments after arbitrarily generating missing values for several real-world tabular datasets. We evaluated both imputational and downstream task performances, and we have seen that the DSAN outperformed the other models, especially in terms of category variable imputation.
Original language | English |
---|---|
Article number | 102 |
Journal | Data |
Volume | 8 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2023 |
Keywords
- attention network
- data imputation
- data quality
- deep learning
- embedding
- missing values
- multi-task learning