TY - JOUR
T1 - Alkyl-Side-Chain Engineering of Nonfused Nonfullerene Acceptors with Simultaneously Improved Material Solubility and Device Performance for Organic Solar Cells
AU - Lee, Taeho
AU - Song, Chang Eun
AU - Lee, Sang Kyu
AU - Shin, Won Suk
AU - Lim, Eunhee
N1 - Publisher Copyright:
©
PY - 2021/2/23
Y1 - 2021/2/23
N2 - Two nonfullerene small molecules, TBTT-BORH and TBTT-ORH, which have the same thiophene-benzothiadiazole-thiophene (TBTT) core flanked with butyloctyl (BO)- and octyl (O)-substituted rhodanines (RHs) at both ends, respectively, are developed as electron acceptors for organic solar cells (OSCs). The difference between the alkyl groups introduced into TBTT-BORH and TBTT-ORH strongly influence the intermolecular aggregation in the film state. Differential scanning calorimetry and UV-vis absorption studies reveal that TBTT-ORH exhibited stronger molecular aggregation behavior than TBTT-BORH. On the contrary, the material solubility is greatly improved by the introduction of a BO group in TBTT-BORH, and the inevitably low molecular interaction and packing ability of the as-cast TBTT-BORH film can be effectively increased by a solvent-vapor annealing (SVA) treatment. OSCs based on the two acceptors and PTB7-Th as a polymer donor are fabricated owing to their complementary absorption and sufficient energy-level offsets. The best power conversion efficiency of 8.33% is obtained with the SVA-treated TBTT-BORH device, where, together with a high open-circuit voltage of 1.02 V, the charge-carrier mobility and the short-circuit current density were greatly improved by the SVA treatment to levels comparable to those of the TBTT-ORH device because of the suppressed charge recombination and improved film morphology. In this work, the simultaneous improvement of both material solubility and device performance is achieved through alkyl side-chain engineering to balance the trade-offs among material solubility/crystallinity/device performance.
AB - Two nonfullerene small molecules, TBTT-BORH and TBTT-ORH, which have the same thiophene-benzothiadiazole-thiophene (TBTT) core flanked with butyloctyl (BO)- and octyl (O)-substituted rhodanines (RHs) at both ends, respectively, are developed as electron acceptors for organic solar cells (OSCs). The difference between the alkyl groups introduced into TBTT-BORH and TBTT-ORH strongly influence the intermolecular aggregation in the film state. Differential scanning calorimetry and UV-vis absorption studies reveal that TBTT-ORH exhibited stronger molecular aggregation behavior than TBTT-BORH. On the contrary, the material solubility is greatly improved by the introduction of a BO group in TBTT-BORH, and the inevitably low molecular interaction and packing ability of the as-cast TBTT-BORH film can be effectively increased by a solvent-vapor annealing (SVA) treatment. OSCs based on the two acceptors and PTB7-Th as a polymer donor are fabricated owing to their complementary absorption and sufficient energy-level offsets. The best power conversion efficiency of 8.33% is obtained with the SVA-treated TBTT-BORH device, where, together with a high open-circuit voltage of 1.02 V, the charge-carrier mobility and the short-circuit current density were greatly improved by the SVA treatment to levels comparable to those of the TBTT-ORH device because of the suppressed charge recombination and improved film morphology. In this work, the simultaneous improvement of both material solubility and device performance is achieved through alkyl side-chain engineering to balance the trade-offs among material solubility/crystallinity/device performance.
UR - http://www.scopus.com/inward/record.url?scp=85101781343&partnerID=8YFLogxK
U2 - 10.1021/acsomega.0c04495
DO - 10.1021/acsomega.0c04495
M3 - Article
AN - SCOPUS:85101781343
SN - 2470-1343
VL - 6
SP - 4562
EP - 4573
JO - ACS Omega
JF - ACS Omega
IS - 7
ER -