Alveoli-Like Multifunctional Scaffolds for Optical and Electrochemical In Situ Monitoring of Cellular Responses from Type II Pneumocytes

Seonghyeon Eom, So Yeon Lee, Jung Tae Park, Inhee Choi

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

While breathing, alveoli are exposed to external irritants, which contribute to the pathogenesis of lung disease. Therefore, in situ monitoring of alveolar responses to stimuli of toxicants under in vivo environments is important to understand lung disease. For this purpose, 3D cell cultures are recently employed for examining cellular responses of pulmonary systems exposed to irritants; however, most of them have used ex situ assays requiring cell lysis and fluorescent labeling. Here, an alveoli-like multifunctional scaffold is demonstrated for optical and electrochemical monitoring of cellular responses of pneumocytes. Porous foam with dimensions like the alveoli structure is used as a backbone for the scaffold, wherein electroactive metal–organic framework crystals, optically active gold nanoparticles, and biocompatible hyaluronic acid are integrated. The fabricated multifunctional scaffold allows for label-free detection and real-time monitoring of oxidative stress released in pneumocytes under toxic-conditions via redox-active amperometry and nanospectroscopy. Moreover, cellular behavior can be statistically classified based on fingerprint Raman signals collected from the cells on the scaffold. The developed scaffold is expected to serve as a promising platform to investigate cellular responses and disease pathogenesis, owing to its versatility in monitoring electrical and optical signals from cells in situ in the 3D microenvironments.

Original languageEnglish
Article number2301395
JournalAdvanced Science
Volume10
Issue number23
DOIs
StatePublished - 15 Aug 2023

Keywords

  • alveoli-like scaffolds
  • electrochemical monitoring
  • gold nanoparticles
  • metal–organic framework
  • optical monitoring

Fingerprint

Dive into the research topics of 'Alveoli-Like Multifunctional Scaffolds for Optical and Electrochemical In Situ Monitoring of Cellular Responses from Type II Pneumocytes'. Together they form a unique fingerprint.

Cite this