TY - JOUR
T1 - An Algorithm for Detecting Collision Risk between Trucks and Pedestrians in the Connected Environment
AU - Son, Seung Oh
AU - Park, Juneyoung
AU - Oh, Cheol
AU - Yeom, Chunho
N1 - Publisher Copyright:
© 2021 Seung-oh Son et al.
PY - 2021
Y1 - 2021
N2 - This study develops an algorithm to detect the risk of collision between trucks (i.e., yard tractors) and pedestrians (i.e., workers) in the connected environment of the port. The algorithm consists of linear regression-based movable coordinate predictions and vertical distance and angle judgments considering the moving characteristics of objects. Time-to-collision for port workers (TTCP) is developed to reflect the characteristics of the port using the predictive coordinates. This study assumes the connected environment in which yard tractors and workers can share coordinates of each object in real time using the Internet of Things (IoT) network. By utilizing microtraffic simulations, a port network is implemented, and the algorithm is verified using data from simulated workers and yard trucks in the connected environment. The risk detection algorithm is validated using confusion matrix. Validation results show that the true-positive rate (TPR) is 61.5∼98.0%, the false-positive rate (FPR) is 79.6∼85.9%, and the accuracy is 72.2∼88.8%. This result implies that the metric scores improve as the data collection cycle increases. This is expected to be useful for sustainable transportation industry sites, particularly IoT-based safety management plans, designed to ensure the safety of pedestrians from crash risk by heavy vehicles (such as yard tractors).
AB - This study develops an algorithm to detect the risk of collision between trucks (i.e., yard tractors) and pedestrians (i.e., workers) in the connected environment of the port. The algorithm consists of linear regression-based movable coordinate predictions and vertical distance and angle judgments considering the moving characteristics of objects. Time-to-collision for port workers (TTCP) is developed to reflect the characteristics of the port using the predictive coordinates. This study assumes the connected environment in which yard tractors and workers can share coordinates of each object in real time using the Internet of Things (IoT) network. By utilizing microtraffic simulations, a port network is implemented, and the algorithm is verified using data from simulated workers and yard trucks in the connected environment. The risk detection algorithm is validated using confusion matrix. Validation results show that the true-positive rate (TPR) is 61.5∼98.0%, the false-positive rate (FPR) is 79.6∼85.9%, and the accuracy is 72.2∼88.8%. This result implies that the metric scores improve as the data collection cycle increases. This is expected to be useful for sustainable transportation industry sites, particularly IoT-based safety management plans, designed to ensure the safety of pedestrians from crash risk by heavy vehicles (such as yard tractors).
UR - http://www.scopus.com/inward/record.url?scp=85118994695&partnerID=8YFLogxK
U2 - 10.1155/2021/9907698
DO - 10.1155/2021/9907698
M3 - Article
AN - SCOPUS:85118994695
SN - 0197-6729
VL - 2021
JO - Journal of Advanced Transportation
JF - Journal of Advanced Transportation
M1 - 9907698
ER -