Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria

Dipak K. Raj, Alok Das Mohapatra, Anup Jnawali, Jenna Zuromski, Ambrish Jha, Gerald Cham-Kpu, Brett Sherman, Rachel M. Rudlaff, Christina E. Nixon, Nicholas Hilton, Andrew V. Oleinikov, Olga Chesnokov, Jordan Merritt, Sunthorn Pond-Tor, Lauren Burns, Grant Jolly, Choukri Ben Mamoun, Edward Kabyemela, Atis Muehlenbachs, Lynn LambertSachy Orr-Gonzalez, Nina F. Gnädig, David A. Fidock, Sangshin Park, Jeffrey D. Dvorin, Norbert Pardi, Drew Weissman, Barbara L. Mui, Ying K. Tam, Jennifer F. Friedman, Michal Fried, Patrick E. Duffy, Jonathan D. Kurtis

Research output: Contribution to journalArticlepeer-review

64 Scopus citations

Abstract

Malaria caused by Plasmodium falciparum remains the leading single-agent cause of mortality in children1, yet the promise of an effective vaccine has not been fulfilled. Here, using our previously described differential screening method to analyse the proteome of blood-stage P. falciparum parasites2, we identify P. falciparum glutamic-acid-rich protein (PfGARP) as a parasite antigen that is recognized by antibodies in the plasma of children who are relatively resistant—but not those who are susceptible—to malaria caused by P. falciparum. PfGARP is a parasite antigen of 80 kDa that is expressed on the exofacial surface of erythrocytes infected by early-to-late-trophozoite-stage parasites. We demonstrate that antibodies against PfGARP kill trophozoite-infected erythrocytes in culture by inducing programmed cell death in the parasites, and that vaccinating non-human primates with PfGARP partially protects against a challenge with P. falciparum. Furthermore, our longitudinal cohort studies showed that, compared to individuals who had naturally occurring anti-PfGARP antibodies, Tanzanian children without anti-PfGARP antibodies had a 2.5-fold-higher risk of severe malaria and Kenyan adolescents and adults without these antibodies had a twofold-higher parasite density. By killing trophozoite-infected erythrocytes, PfGARP could synergize with other vaccines that target parasite invasion of hepatocytes or the invasion of and egress from erythrocytes.

Original languageEnglish
Pages (from-to)104-108
Number of pages5
JournalNature
Volume582
Issue number7810
DOIs
StatePublished - 4 Jun 2020

Fingerprint

Dive into the research topics of 'Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria'. Together they form a unique fingerprint.

Cite this