TY - JOUR
T1 - Application of artificial neural networks to ship detection from X-band Kompsat-5 imagery
AU - Hwang, Jeong In
AU - Chae, Sung Ho
AU - Kim, Daeseong
AU - Jung, Hyung Sup
N1 - Publisher Copyright:
© 2017 by the authors.
PY - 2017/9/20
Y1 - 2017/9/20
N2 - For ship detection, X-band synthetic aperture radar (SAR) imagery provides very useful data, in that ship targets look much brighter than surrounding sea clutter due to the corner-reflection effect. However, there are many phenomena which bring out false detection in the SAR image, such as noise of background, ghost phenomena, side-lobe effects and so on. Therefore, when ship-detection algorithms are carried out, we should consider these effects andmitigate themto acquire a better result. In this paper, we propose an efficient method to detect ship targets from X-band Kompsat-5 SAR imagery using the artificial neural network (ANN). The method produces the ship-probability map using ANN, and then detects ships from the ship-probability map by using a threshold value. For the purpose of getting an improved ship detection, we strived to produce optimal input layers used for ANN. In order to reduce phenomena related to the false detections, the non-local (NL)-means filter and median filter were utilized. The NL-means filter effectively reduced noise on SAR imagery without smoothing edges of the objects, and the median filter was used to remove ship targets in SAR imagery. Through the filtering approaches, we generated two input layers from a Kompsat-5 SAR image, and created a ship-probability map via ANN from the two input layers. When the threshold value of 0.67 was imposed on the ship-probability map, the result of ship detection from the ship-probability map was a 93.9% recall, 98.7% precision and 6.1% false alarm rate. Therefore, the proposed method was successfully applied to the ship detection from the Kompsat-5 SAR image.
AB - For ship detection, X-band synthetic aperture radar (SAR) imagery provides very useful data, in that ship targets look much brighter than surrounding sea clutter due to the corner-reflection effect. However, there are many phenomena which bring out false detection in the SAR image, such as noise of background, ghost phenomena, side-lobe effects and so on. Therefore, when ship-detection algorithms are carried out, we should consider these effects andmitigate themto acquire a better result. In this paper, we propose an efficient method to detect ship targets from X-band Kompsat-5 SAR imagery using the artificial neural network (ANN). The method produces the ship-probability map using ANN, and then detects ships from the ship-probability map by using a threshold value. For the purpose of getting an improved ship detection, we strived to produce optimal input layers used for ANN. In order to reduce phenomena related to the false detections, the non-local (NL)-means filter and median filter were utilized. The NL-means filter effectively reduced noise on SAR imagery without smoothing edges of the objects, and the median filter was used to remove ship targets in SAR imagery. Through the filtering approaches, we generated two input layers from a Kompsat-5 SAR image, and created a ship-probability map via ANN from the two input layers. When the threshold value of 0.67 was imposed on the ship-probability map, the result of ship detection from the ship-probability map was a 93.9% recall, 98.7% precision and 6.1% false alarm rate. Therefore, the proposed method was successfully applied to the ship detection from the Kompsat-5 SAR image.
KW - Artificial neural network (ANN)
KW - Kompsat-5
KW - Ship detection
KW - Synthetic aperture radar (SAR)
UR - http://www.scopus.com/inward/record.url?scp=85029808555&partnerID=8YFLogxK
U2 - 10.3390/app7090961
DO - 10.3390/app7090961
M3 - Article
AN - SCOPUS:85029808555
SN - 2076-3417
VL - 7
JO - Applied Sciences (Switzerland)
JF - Applied Sciences (Switzerland)
IS - 9
M1 - 961
ER -