Assembling a supercapacitor electrode with dual metal oxides and activated carbon using a liquid phase plasma

Seo Jin Ki, Ki Joon Jeon, Young Kwon Park, Hyunwoong Park, Sangmin Jeong, Heon Lee, Sang Chul Jung

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Developing supercapacitor electrodes at an affordable cost while improving their energy and/or power density values is still a challenging task. This study introduced a recipe which assembled a novel electrode composite using a liquid phase plasma that was applied to a reactant solution containing an activated carbon (AC) powder with dual metal precursors of iron and manganese. A comparison was made between the composites doped with single and dual metal components as well as among those synthesized under different precursor concentrations and plasma durations. The results showed that increasing the precursor concentration and plasma duration raised the content of both metal oxides in the composites, whereas the deposition conditions were more favorable to iron oxide than manganese oxide, due to its higher standard potential. The composite treated with the longest plasma duration and highest manganese concentration was superior to the others in terms of cyclic stability and equivalent series resistance. In addition, the new composite selected out of them showed better electrochemical performance than the raw AC material only and even two types of single metal-based composites, owing largely to the synergistic effect of the two metal oxides. Therefore, the proposed methodology can be used to modify existing and future composite electrodes to improve their performance with relatively cheap host and guest materials.

Original languageEnglish
Pages (from-to)880-887
Number of pages8
JournalJournal of Environmental Management
Volume203
DOIs
StatePublished - 1 Dec 2017

Keywords

  • Cyclic stability
  • Dual metal oxides
  • Electrochemical capacitor
  • Electrochemical performance
  • Equivalent series resistance
  • Liquid phase plasma

Fingerprint

Dive into the research topics of 'Assembling a supercapacitor electrode with dual metal oxides and activated carbon using a liquid phase plasma'. Together they form a unique fingerprint.

Cite this