TY - GEN
T1 - Bidirectional Domain Mixup for Domain Adaptive Semantic Segmentation
AU - Kim, Daehan
AU - Seo, Minseok
AU - Park, Kwanyong
AU - Shin, Inkyu
AU - Woo, Sanghyun
AU - Kweon, In So
AU - Choi, Dong Geol
N1 - Publisher Copyright:
Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2023/6/27
Y1 - 2023/6/27
N2 - Mixup provides interpolated training samples and allows the model to obtain smoother decision boundaries for better generalization. The idea can be naturally applied to the domain adaptation task, where we can mix the source and target samples to obtain domain-mixed samples for better adaptation. However, the extension of the idea from classification to segmentation (i.e., structured output) is nontrivial. This paper systematically studies the impact of mixup under the domain adaptive semantic segmentation task and presents a simple yet effective mixup strategy called Bidirectional Domain Mixup (BDM). In specific, we achieve domain mixup in two-step: cut and paste. Given the warm-up model trained from any adaptation techniques, we forward the source and target samples and perform a simple threshold-based cut out of the unconfident regions (cut). After then, we fill-in the dropped regions with the other domain region patches (paste). In doing so, we jointly consider class distribution, spatial structure, and pseudo label confidence. Based on our analysis, we found that BDM leaves domain transferable regions by cutting, balances the dataset-level class distribution while preserving natural scene context by pasting. We coupled our proposal with various state-of-the-art adaptation models and observe significant improvement consistently. We also provide extensive ablation experiments to empirically verify our main components of the framework. Visit our project page with the code at https://sites.google.com/view/bidirectional-domain-mixup.
AB - Mixup provides interpolated training samples and allows the model to obtain smoother decision boundaries for better generalization. The idea can be naturally applied to the domain adaptation task, where we can mix the source and target samples to obtain domain-mixed samples for better adaptation. However, the extension of the idea from classification to segmentation (i.e., structured output) is nontrivial. This paper systematically studies the impact of mixup under the domain adaptive semantic segmentation task and presents a simple yet effective mixup strategy called Bidirectional Domain Mixup (BDM). In specific, we achieve domain mixup in two-step: cut and paste. Given the warm-up model trained from any adaptation techniques, we forward the source and target samples and perform a simple threshold-based cut out of the unconfident regions (cut). After then, we fill-in the dropped regions with the other domain region patches (paste). In doing so, we jointly consider class distribution, spatial structure, and pseudo label confidence. Based on our analysis, we found that BDM leaves domain transferable regions by cutting, balances the dataset-level class distribution while preserving natural scene context by pasting. We coupled our proposal with various state-of-the-art adaptation models and observe significant improvement consistently. We also provide extensive ablation experiments to empirically verify our main components of the framework. Visit our project page with the code at https://sites.google.com/view/bidirectional-domain-mixup.
UR - http://www.scopus.com/inward/record.url?scp=85167696102&partnerID=8YFLogxK
U2 - 10.1609/aaai.v37i1.25193
DO - 10.1609/aaai.v37i1.25193
M3 - Conference contribution
AN - SCOPUS:85167696102
T3 - Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
SP - 1114
EP - 1123
BT - AAAI-23 Technical Tracks 1
A2 - Williams, Brian
A2 - Chen, Yiling
A2 - Neville, Jennifer
PB - AAAI Press
T2 - 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Y2 - 7 February 2023 through 14 February 2023
ER -