TY - JOUR
T1 - BinRank
T2 - Scaling dynamic authority-based search using materialized subgraphs
AU - Hwang, Heasoo
AU - Balmin, Andrey
AU - Reinwald, Berthold
AU - Nijkamp, Erik
PY - 2010
Y1 - 2010
N2 - Dynamic authority-based keyword search algorithms, such as ObjectRank and personalized PageRank, leverage semantic link information to provide high quality, high recall search in databases, and the Web. Conceptually, these algorithms require a query-time PageRank-style iterative computation over the full graph. This computation is too expensive for large graphs, and not feasible at query time. Alternatively, building an index of precomputed results for some or all keywords involves very expensive preprocessing. We introduce BinRank, a system that approximates ObjectRank results by utilizing a hybrid approach inspired by materialized views in traditional query processing. We materialize a number of relatively small subsets of the data graph in such a way that any keyword query can be answered by running ObjectRank on only one of the subgraphs. BinRank generates the subgraphs by partitioning all the terms in the corpus based on their co-occurrence, executing ObjectRank for each partition using the terms to generate a set of random walk starting points, and keeping only those objects that receive non-negligible scores. The intuition is that a subgraph that contains all objects and links relevant to a set of related terms should have all the information needed to rank objects with respect to one of these terms. We demonstrate that BinRank can achieve subsecond query execution time on the English Wikipedia data set, while producing high-quality search results that closely approximate the results of ObjectRank on the original graph. The Wikipedia link graph contains about 108 edges, which is at least two orders of magnitude larger than what prior state of the art dynamic authority-based search systems have been able to demonstrate. Our experimental evaluation investigates the trade-off between query execution time, quality of the results, and storage requirements of BinRank.
AB - Dynamic authority-based keyword search algorithms, such as ObjectRank and personalized PageRank, leverage semantic link information to provide high quality, high recall search in databases, and the Web. Conceptually, these algorithms require a query-time PageRank-style iterative computation over the full graph. This computation is too expensive for large graphs, and not feasible at query time. Alternatively, building an index of precomputed results for some or all keywords involves very expensive preprocessing. We introduce BinRank, a system that approximates ObjectRank results by utilizing a hybrid approach inspired by materialized views in traditional query processing. We materialize a number of relatively small subsets of the data graph in such a way that any keyword query can be answered by running ObjectRank on only one of the subgraphs. BinRank generates the subgraphs by partitioning all the terms in the corpus based on their co-occurrence, executing ObjectRank for each partition using the terms to generate a set of random walk starting points, and keeping only those objects that receive non-negligible scores. The intuition is that a subgraph that contains all objects and links relevant to a set of related terms should have all the information needed to rank objects with respect to one of these terms. We demonstrate that BinRank can achieve subsecond query execution time on the English Wikipedia data set, while producing high-quality search results that closely approximate the results of ObjectRank on the original graph. The Wikipedia link graph contains about 108 edges, which is at least two orders of magnitude larger than what prior state of the art dynamic authority-based search systems have been able to demonstrate. Our experimental evaluation investigates the trade-off between query execution time, quality of the results, and storage requirements of BinRank.
KW - ObjectRank
KW - Online keyword search
KW - approximation algorithms
KW - scalability
UR - http://www.scopus.com/inward/record.url?scp=77954159074&partnerID=8YFLogxK
U2 - 10.1109/TKDE.2010.85
DO - 10.1109/TKDE.2010.85
M3 - Article
AN - SCOPUS:77954159074
SN - 1041-4347
VL - 22
SP - 1176
EP - 1190
JO - IEEE Transactions on Knowledge and Data Engineering
JF - IEEE Transactions on Knowledge and Data Engineering
IS - 8
M1 - 5467077
ER -