TY - JOUR
T1 - Carbon dioxide photoreduction on the Bi2S3/MoS2 catalyst
AU - Kim, Raeyeong
AU - Kim, Junyeong
AU - Do, Jeong Yeon
AU - Seo, Myung Won
AU - Kang, Misook
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/12
Y1 - 2019/12
N2 - The photocatalytic activity of a material is contingent on efficient light absorption, fast electron excitation, and control of the recombination rate by effective charge separation. Inorganic materials manufactured in unique shapes via controlled synthesis can exhibit significantly improved properties. Here, n-type Bi2S3 nanorods (with good optical activity) were wrapped with two-dimensional (2D) p-type MoS2 sheets, which have good light absorption properties. The designed p-n junction Bi2S3/MoS2 composite exhibited enhanced light absorption over the entire wavelength range, and higher carbon dioxide adsorption capacity and photocurrent density compared to the single catalysts. Consequently, the activity of the 1Bi2S3/1MoS2 composite catalyst for the photocatalytic reduction of carbon dioxide was more than 20 times higher than that of the single catalysts under visible-light irradiation at ≤400 nm, with partial selectivity for CO conversion. This is attributed to the p-n heterojunction Bi2S3/MoS2 composite designed in this study, the high light absorption of n-Bi2S3, accelerated electron excitation, and the electron affinity of the 2D sheet-p-MoS2, which quickly absorbed excited electrons, resulting in effective charge separation. This ultimately improved the catalytic performance by continuously supplying catalytically active sites to the heterojunction interfaces.
AB - The photocatalytic activity of a material is contingent on efficient light absorption, fast electron excitation, and control of the recombination rate by effective charge separation. Inorganic materials manufactured in unique shapes via controlled synthesis can exhibit significantly improved properties. Here, n-type Bi2S3 nanorods (with good optical activity) were wrapped with two-dimensional (2D) p-type MoS2 sheets, which have good light absorption properties. The designed p-n junction Bi2S3/MoS2 composite exhibited enhanced light absorption over the entire wavelength range, and higher carbon dioxide adsorption capacity and photocurrent density compared to the single catalysts. Consequently, the activity of the 1Bi2S3/1MoS2 composite catalyst for the photocatalytic reduction of carbon dioxide was more than 20 times higher than that of the single catalysts under visible-light irradiation at ≤400 nm, with partial selectivity for CO conversion. This is attributed to the p-n heterojunction Bi2S3/MoS2 composite designed in this study, the high light absorption of n-Bi2S3, accelerated electron excitation, and the electron affinity of the 2D sheet-p-MoS2, which quickly absorbed excited electrons, resulting in effective charge separation. This ultimately improved the catalytic performance by continuously supplying catalytically active sites to the heterojunction interfaces.
KW - CO2 photoreduction
KW - Effective charge separation
KW - P-n heterojunction Bi2S3/MoS2 composite
KW - Selective CO production
UR - http://www.scopus.com/inward/record.url?scp=85075948177&partnerID=8YFLogxK
U2 - 10.3390/catal9120998
DO - 10.3390/catal9120998
M3 - Article
AN - SCOPUS:85075948177
SN - 2073-4344
VL - 9
JO - Catalysts
JF - Catalysts
IS - 12
M1 - 998
ER -