Carrier Depletion near the Grain Boundary of a SiC Bicrystal

Young Wook Kim, Eita Tochigi, Junichi Tatami, Yong Hyeon Kim, Seung Hoon Jang, Srivani Javvaji, Jeil Jung, Kwang Joo Kim, Yuichi Ikuhara

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Silicon carbide (SiC) bicrystals were prepared by diffusion bonding, and their grain boundary was observed using scanning transmission electron microscopy. The n-type electrical conductivity of a SiC single crystal was confirmed by scanning nonlinear dielectric microscopy (SNDM). Dopant profiling of the sample by SNDM showed that the interface acted as an electrical insulator with a ~2-μm-thick carrier depletion layer. The carrier depletion layer contained a higher number of oxygen impurities than the bulk crystals due to the incorporation of oxygen from the native oxide film during diffusion bonding. Density functional theory calculations of the density of states as a function of the bandgap also supported these findings. The existence of a carrier depletion layer was also confirmed in a p-type polycrystalline SiC ceramic. These results suggest that the electrical conductivity of SiC ceramics was mostly affected by carrier depletion near the grain boundary rather than the grain boundary itself.

Original languageEnglish
Article number18014
JournalScientific Reports
Volume9
Issue number1
DOIs
StatePublished - 1 Dec 2019

Fingerprint

Dive into the research topics of 'Carrier Depletion near the Grain Boundary of a SiC Bicrystal'. Together they form a unique fingerprint.

Cite this