Abstract
Highly ordered mesoporous tungsten oxide (meso-WO3) was successfully synthesized using mesoporous silica KIT-6 as a hard template via the nanoreplication method. The physicochemical properties of meso-WO3 were characterized by X-ray diffraction, nitrogen adsorption-desorption, transmission electron microscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption of ammonia, and infra-red spectroscopy of adsorbed pyridine. No oxidation state other than WO3 was observed in the meso-WO3 sample. Lewis acid sites were dominant in meso-WO3, which could be confirmed by infra-red spectroscopy of pyridine and temperature-programmed desorption of ammonia. Its catalytic behavior in 2-butanol dehydration was investigated in a fixed bed reactor and compared with that of the WO3/MCM-41 catalyst prepared by the atomic layer deposition method. The meso-WO3 catalyst exhibited higher 2-butanol dehydration activity than that of the WO3/MCM-41 catalyst, which is ascribed to the stronger acidity as well as higher amount of acid sites that are mainly composed of Lewis acid sites in the meso-WO3 catalyst.
Original language | English |
---|---|
Pages (from-to) | 8828-8833 |
Number of pages | 6 |
Journal | Journal of Nanoscience and Nanotechnology |
Volume | 14 |
Issue number | 11 |
DOIs | |
State | Published - 1 Nov 2014 |
Keywords
- Butanol dehydration
- Butene
- Mesoporous tungsten oxide
- Nano-replication