Catalytic pyrolysis of harmful plastic waste to alleviate environmental impacts

Hyunji Yim, Soheil Valizadeh, Gwang Hoon Rhee, Jungho Jae, Moonis Ali Khan, Byong Hun Jeon, Hyungseok Nam, Young Kwon Park

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Wax is a detrimental byproduct of plastic waste pyrolysis causing challenges upon its release into the environment owing to persistence and potential toxicity. In this study, the valorization of wax materials through conversion into BTEX (i.e., benzene, toluene, ethylbenzene, and xylene) was achieved via catalytic pyrolysis using zeolite-based catalysts. The potential of two types of waxes, spent wax (SW), derived from the pyrolysis of plastic waste, and commercial paraffin wax (PW), for BTEX generation, was investigated. Using HZSM-5, higher yields of oil (54.9 wt%) and BTEX (18.2 wt%) were produced from the pyrolysis of SW compared to PW (32.3 and 14.1 wt%, respectively). This is due to the improved accessibility of lighter hydrocarbons in SW to Brønsted and Lewis acid sites in HZSM-5 micropores, promoting cracking, isomerization, cyclization, Diels-Alder, and dehydrogenation reactions. Further, the use of HZSM-5 resulted in significantly larger yields of oil and BTEX from SW pyrolysis compared to Hbeta and HY. This phenomenon is ascribed to the well-balanced distribution of Brønsted and Lewis acid sites and the identical geometric structure of HZSM-5 micropores and BTEX molecules. The addition of Ga to HZSM-5 further led to 2.24% and 28.30% enhancements in oil and BTEX yields, respectively, by adjusting the acidity of the catalyst through the introduction of new Lewis acid sites. The regeneration of the Ga/HZSM-5 catalyst by removing deposited coke on the spent catalyst under air partially recovered catalytic activity. This study not only offers an efficient transformation of undesirable wax into valuable fuels but also provides an environmentally promising solution, mitigating pollution, contributing to carbon capture, and promoting a healthier and more sustainable environment. It also suggests future research directions, including catalyst optimization and deactivation management, feedstock variability exploration, and techno-economic analyses for sustainable wax conversion into BTEX via catalytic pyrolysis.

Original languageEnglish
Article number123198
JournalEnvironmental Pollution
Volume343
DOIs
StatePublished - 15 Feb 2024

Keywords

  • Aromatics
  • HZSM-5
  • Plastic-derived wax
  • Thermocatalytic conversion
  • Zeolite catalysts

Fingerprint

Dive into the research topics of 'Catalytic pyrolysis of harmful plastic waste to alleviate environmental impacts'. Together they form a unique fingerprint.

Cite this