TY - JOUR
T1 - Catalytic pyrolysis of tetra pak over acidic catalysts
AU - Siddiqui, Muhammad Zain
AU - Han, Tae Uk
AU - Park, Young Kwon
AU - Kim, Young Min
AU - Kim, Seungdo
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/6
Y1 - 2020/6
N2 - The thermal and catalytic pyrolysis of two kinds of Tetra Pak waste (TP-1 and TP-2) over three different acidic catalysts—HZSM-5(SiO2/Al2O3, 30), HBeta (38), and Al-MCM-41(20)—were investigated in this study. Tetra Pak (TP) wastes consist of composite material comprising kraft paper, polyethylene (PE) film, and aluminum foil. Thermal decomposition behaviors during the pyrolysis of TPs were monitored using a thermogravimetric (TG) analyzer and tandem micro reactor-gas chromatography/mass spectrometry (TMR-GC/MS). Neither the interaction between the non-catalytic pyrolysis intermediates of kraft paper and PE, nor the effect of aluminum foil have been monitored during the non-catalytic TG analysis of TPs. The maximum decomposition temperatures of PE in TP-1 shifted from 465◦C to 432◦C by HBeta(38), 439◦C by HZSM-5(30), and 449◦C by Al-MCM-41(20), respectively. The results of the TMR-GC/MS analysis indicate that the non-catalytic pyrolysis of TPs results in the formation of large amounts of furans and heavy hydrocarbons and they are converted efficiently to aromatic hydrocarbons over the acidic catalysts. Among the three catalysts, HZSM-5(30) produced the largest amount of aromatic hydrocarbons, followed by HBeta(38) and Al-MCM-41(20) owing to their different acidity and pore size. Compared to TP-1, TP-2 produced a larger amount of aromatic hydrocarbons via catalytic pyrolysis because of its relatively larger PE content. The synergistic formation of aromatic hydrocarbons was also enhanced during the catalytic pyrolysis of TPs due to the effective role of PE as hydrogen donor to kraft paper. In terms of their catalytic effectiveness, HZSM-5(30) had a longer lifetime than HBeta(38).
AB - The thermal and catalytic pyrolysis of two kinds of Tetra Pak waste (TP-1 and TP-2) over three different acidic catalysts—HZSM-5(SiO2/Al2O3, 30), HBeta (38), and Al-MCM-41(20)—were investigated in this study. Tetra Pak (TP) wastes consist of composite material comprising kraft paper, polyethylene (PE) film, and aluminum foil. Thermal decomposition behaviors during the pyrolysis of TPs were monitored using a thermogravimetric (TG) analyzer and tandem micro reactor-gas chromatography/mass spectrometry (TMR-GC/MS). Neither the interaction between the non-catalytic pyrolysis intermediates of kraft paper and PE, nor the effect of aluminum foil have been monitored during the non-catalytic TG analysis of TPs. The maximum decomposition temperatures of PE in TP-1 shifted from 465◦C to 432◦C by HBeta(38), 439◦C by HZSM-5(30), and 449◦C by Al-MCM-41(20), respectively. The results of the TMR-GC/MS analysis indicate that the non-catalytic pyrolysis of TPs results in the formation of large amounts of furans and heavy hydrocarbons and they are converted efficiently to aromatic hydrocarbons over the acidic catalysts. Among the three catalysts, HZSM-5(30) produced the largest amount of aromatic hydrocarbons, followed by HBeta(38) and Al-MCM-41(20) owing to their different acidity and pore size. Compared to TP-1, TP-2 produced a larger amount of aromatic hydrocarbons via catalytic pyrolysis because of its relatively larger PE content. The synergistic formation of aromatic hydrocarbons was also enhanced during the catalytic pyrolysis of TPs due to the effective role of PE as hydrogen donor to kraft paper. In terms of their catalytic effectiveness, HZSM-5(30) had a longer lifetime than HBeta(38).
KW - Aromatic hydrocarbons
KW - Catalytic pyrolysis
KW - HZSM-5
KW - Tetra Pak
UR - http://www.scopus.com/inward/record.url?scp=85085887372&partnerID=8YFLogxK
U2 - 10.3390/catal10060602
DO - 10.3390/catal10060602
M3 - Article
AN - SCOPUS:85085887372
SN - 2073-4344
VL - 10
JO - Catalysts
JF - Catalysts
IS - 6
M1 - 602
ER -