Characteristics of two-stage air gasification of polystyrene with active carbon as a tar removal agent

Yong Seong Jeong, Jong Woo Kim, Myung Won Seo, Tae Young Mun, Joo Sik Kim

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Air gasification of polystyrene was conducted using a two-stage gasifier consisting of a fluidized bed and a tar-cracking reactor filled with active carbon. The aim was to obtain a hydrogen-rich producer gas with a low level of tar. In addition to the possibility of tar removal, the effects of the reaction temperature and equivalence ratio on the producer gas quality were investigated. In this study, it was found that the gasification of polystyrene had different characteristics to the gasification of other plastic, resulting in a high production of char. Active carbon played a crucial role, significantly decreasing the tar content in gas to 11 mg/Nm3. Furthermore, gasification with active carbon produced a gas having a high content of hydrogen (26 vol%). The change in fluidized bed gasifier temperature within the range of 700–900 °C exerted no significant effects on the gas quality. In contrast, a high tar-cracking reactor temperature clearly increased hydrogen and carbon monoxide contents. With an increasing equivalence ratio, oxidation of char was promoted, resulting in a significant increase in gas production and carbon oxides. The current study showed a good possibility for the recycling of polystyrene via gasification, producing a clean and hydrogen-rich gas.

Original languageEnglish
Article number119681
JournalEnergy
Volume219
DOIs
StatePublished - 15 Mar 2021

Keywords

  • Active carbon
  • Carbon monoxide
  • Hydrogen
  • Polystyrene
  • Tar
  • Two-stage gasification

Fingerprint

Dive into the research topics of 'Characteristics of two-stage air gasification of polystyrene with active carbon as a tar removal agent'. Together they form a unique fingerprint.

Cite this