Clean bio-oil production from fast pyrolysis of sewage sludge: Effects of reaction conditions and metal oxide catalysts

Hyun Ju Park, Hyeon Su Heo, Young Kwon Park, Jin Heong Yim, Jong Ki Jeon, Junhong Park, Changkook Ryu, Seung Soo Kim

Research output: Contribution to journalArticlepeer-review

171 Scopus citations

Abstract

Fast pyrolysis of sewage sludge was carried out under different reaction conditions, and its effects on bio-oil characteristics were studied. The effect of metal oxide catalysts on the removal of chlorine in the bio-oil was also investigated for four types of catalysts. The optimal pyrolysis temperature for bio-oil production was found to be 450°C, while much smaller and larger feed sizes adversely influenced production. Higher flow and feeding rates were more effective but did not greatly affect bio-oil yields. The use of the product gas as the fluidizing medium gave an increased bio-oil yield. Metal oxide catalysts (CaO and La2O3) contributed to a slight decrease in bio-oil yield and an increase in water content but were significantly effective in removal of chlorine from the bio-oil. The fixed catalyst bed system exhibited a higher removal rate than when metal oxide-supported alumina was used as the fluidized bed material.

Original languageEnglish
Pages (from-to)S83-S85
JournalBioresource Technology
Volume101
Issue number1 SUPPL.
DOIs
StatePublished - Jan 2010

Keywords

  • Bio-oil
  • Chlorine
  • Fast pyrolysis
  • Metal oxide catalysts
  • Sewage sludge

Fingerprint

Dive into the research topics of 'Clean bio-oil production from fast pyrolysis of sewage sludge: Effects of reaction conditions and metal oxide catalysts'. Together they form a unique fingerprint.

Cite this