TY - JOUR
T1 - ClO2 dipping treatment inhibits gray mold on cut rose flowers during storage
AU - Lee, Young Boon
AU - Kim, Wan Soon
N1 - Publisher Copyright:
© 2020 The Japanese Society for Horticultural Science (JSHS), All rights reserved.
PY - 2020
Y1 - 2020
N2 - This study investigated the antifungal effect of chlorine dioxide (ClO2) dipping on Botrytis cinerea, the causal agent of gray mold, on cut rose flowers (Rosa hybrida L.). In vitro, the spore germination of gray mold was inhibited 100% by instant dipping with ClO2 solution (5 to 10 μL·L−1). In particular, ClO2 at 5 μL·L−1 was found to be ideal for hindering spore activity without causing any damage to the petals. This ClO2 antifungal effect on cut flowers was investigated in a white cultivar ‘Beast’ with different treatments: dipping (one second), spraying (4.8 mL), or gassing (two hours) with 5 μL·L−1 ClO2. Six days after ClO2 treatment, the incidence of gray mold in the artificially-inoculated flowers was 2.5% (dipping), 9.4% (spraying), or 8.4% (gassing), respectively, which were all significantly lower than the control incidence of 17.6%. Especially, ClO2 dipping reduced the incidence of gray mold by up to 26.1% compared to the control in five other rose cultivars (‘Antique Curl’, ‘Green Beauty’, ‘Feel Lip’, ‘Pink Heart’, and ‘Venus Berry’). No petal discoloration was detected, and petal color values (chroma or hue) were maintained regardless of ClO2 dipping. This result suggests that immediate ClO2 dipping is applicable to inhibit gray mold on cut rose flowers at a level of 5 μL·L−1 just before postharvest storage.
AB - This study investigated the antifungal effect of chlorine dioxide (ClO2) dipping on Botrytis cinerea, the causal agent of gray mold, on cut rose flowers (Rosa hybrida L.). In vitro, the spore germination of gray mold was inhibited 100% by instant dipping with ClO2 solution (5 to 10 μL·L−1). In particular, ClO2 at 5 μL·L−1 was found to be ideal for hindering spore activity without causing any damage to the petals. This ClO2 antifungal effect on cut flowers was investigated in a white cultivar ‘Beast’ with different treatments: dipping (one second), spraying (4.8 mL), or gassing (two hours) with 5 μL·L−1 ClO2. Six days after ClO2 treatment, the incidence of gray mold in the artificially-inoculated flowers was 2.5% (dipping), 9.4% (spraying), or 8.4% (gassing), respectively, which were all significantly lower than the control incidence of 17.6%. Especially, ClO2 dipping reduced the incidence of gray mold by up to 26.1% compared to the control in five other rose cultivars (‘Antique Curl’, ‘Green Beauty’, ‘Feel Lip’, ‘Pink Heart’, and ‘Venus Berry’). No petal discoloration was detected, and petal color values (chroma or hue) were maintained regardless of ClO2 dipping. This result suggests that immediate ClO2 dipping is applicable to inhibit gray mold on cut rose flowers at a level of 5 μL·L−1 just before postharvest storage.
KW - Antimicrobial
KW - Botrytis cinerea
KW - Cut flowers
KW - Rosa hybrida L.
KW - Spore germination
UR - http://www.scopus.com/inward/record.url?scp=85088165706&partnerID=8YFLogxK
U2 - 10.2503/hortj.UTD-138
DO - 10.2503/hortj.UTD-138
M3 - Article
AN - SCOPUS:85088165706
SN - 2189-0102
VL - 89
SP - 496
EP - 501
JO - Horticulture Journal
JF - Horticulture Journal
IS - 4
ER -