Combined effects of short-term noise exposure and hygrothermal conditions on indoor environmental perceptions

Wonyoung Yang, Hyeun Jun Moon, Myung Jun Kim

Research output: Contribution to journalArticlepeer-review

32 Scopus citations


Realistic thermal conditions with various humidity levels have been considered to examine the combined effects of noise and thermal conditions on indoor environmental perceptions. Subjective assessments of temperature, humidity and psychoacoustics were conducted with 26 subjects under combined environments of seven thermal conditions (18℃: RH 30, 60%, 24℃: RH 27, 43, 65%, 30℃: RH 30, 60%), two noise types (fan and babble noises) and five noise levels (45, 50, 55, 60 and 65 dBA). Three-minute moderate noise exposure did not affect temperature or humidity sensations. However, the temperature and humidity levels affected loudness, annoyance and acoustic preferences when noise was presented as babble. Fan noise perceptions were found to be independent of thermal conditions. Gender differences were clearly found in terms of thermal and psychoacoustic perceptions. Men were more sensitive to hot sensations than women, and women were more sensitive to arid sensations than men. Women were more sensitive to noise levels than men. Gender differences were also found in terms of different types of noise. Men were found to be significantly less sensitive to fan noise than women. Even though psychoacoustic parameters were affected by indoor thermal conditions, thermal parameters were not affected by short-term moderate noise. The combined effect of various types of noise and temperature is still unclear, and this will be considered in a future larger cohort study.

Original languageEnglish
Pages (from-to)1119-1133
Number of pages15
JournalIndoor and Built Environment
Issue number8
StatePublished - 1 Oct 2018


  • Gender difference
  • Humidity sensation
  • Multisensory interaction
  • Short-term noise exposure
  • Temperature sensation
  • Thermal perception


Dive into the research topics of 'Combined effects of short-term noise exposure and hygrothermal conditions on indoor environmental perceptions'. Together they form a unique fingerprint.

Cite this