Abstract
Highly porous holey inorganic nanosheets have received growing attention as emerging 2D nanostructures because of their excellent functionalities as active materials and hybridization matrices. Here we report the composition-controlled synthesis of ultrathin holey metal oxynitride nanosheets with subnanometer-level thickness of ∼0.8 nm and tunable defect/surface structures. The application of the obtained holey TiO1−xNx nanosheets as immobilization substrates allowed to maximize mass electrocatalytic activity of hybridized Pt nanoclusters via enhanced interfacial interaction at defective sites. The strong electronic coupling between positively-charged Pt nanoclusters and holey TiO1−xNx nanosheets with interfacial oxygen linkers enabled to achieve a superior electrocatalytic performance for hydrogen evolution reaction with an unusually high gravimetric efficiency (20.8 AmgPt−1), i.e., one of the most efficient values for Pt nanostructures. Density functional theory calculations and in-situ Raman analysis emphasize the significant contributions of interfacial oxygen linker in holey TiO1−xNx substrates and positive charge of Pt nanocluster to optimizing the electrocatalytic activity. The present study underscores that employing composition-controlled holey TiO1−xNx nanosheets as immobilization substrates provides a novel efficient methodology to explore high-performance electrocatalysts via the improvement of charge/mass transport and electrocatalytic kinetics, and the optimization of d-band center upon hybridization.
Original language | English |
---|---|
Article number | 135415 |
Journal | Chemical Engineering Journal |
Volume | 437 |
DOIs | |
State | Published - 1 Jun 2022 |
Keywords
- Crystal defect
- Holey metal oxynitride nanosheet
- Interfacial anion linker
- Mass electrocatalytic activity
- Subnanometer-level thickness