TY - JOUR
T1 - Convolutional Neural Networks for Low Energy Gamma-Ray Air Shower Identification with HAWC
AU - the HAWC Collaboration
AU - Watson, Ian James
AU - Abeysekara, A. U.
AU - Albert, A.
AU - Alfaro, R.
AU - Alvarez, C.
AU - Álvarez, J. D.
AU - Angeles Camacho, J. R.
AU - Arteaga-Velázquez, J. C.
AU - Arunbabu, K. P.
AU - Avila Rojas, D.
AU - Ayala Solares, H. A.
AU - Babu, R.
AU - Baghmanyan, V.
AU - Barber, A. S.
AU - Becerra Gonzalez, J.
AU - Belmont-Moreno, E.
AU - BenZvi, S. Y.
AU - Berley, D.
AU - Brisbois, C.
AU - Caballero-Mora, K. S.
AU - Capistrán, T.
AU - Carramiñana, A.
AU - Casanova, S.
AU - Chaparro-Amaro, O.
AU - Cotti, U.
AU - Cotzomi, J.
AU - Coutiño de León, S.
AU - De la Fuente, E.
AU - de León, C.
AU - Diaz-Cruz, L.
AU - Diaz Hernandez, R.
AU - Díaz-Vélez, J. C.
AU - Dingus, B. L.
AU - Durocher, M.
AU - DuVernois, M. A.
AU - Ellsworth, R. W.
AU - Engel, K.
AU - Espinoza, C.
AU - Fan, K. L.
AU - Fang, K.
AU - Fernández Alonso, M.
AU - Fick, B.
AU - Fleischhack, H.
AU - Flores, J. L.
AU - Fraija, N. I.
AU - Garcia, D.
AU - García-González, J. A.
AU - García-Luna, J. L.
AU - García-Torales, G.
AU - Lee, J.
N1 - Publisher Copyright:
© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)
PY - 2022/3/18
Y1 - 2022/3/18
N2 - A major task in ground-based gamma-ray astrophysics analyses is to separate events caused by gamma rays from the overwhelming hadronic cosmic-ray background. In this talk we are interested in improving the gamma ray regime below 1 TeV, where the gamma and cosmic-ray separation becomes more difficult. Traditionally, the separation has been done in particle sampling arrays by selections on summary variables which distinguish features between the gamma and cosmic-ray air showers, though the distributions become more similar with lower energies. The structure of the HAWC observatory, however, makes it natural to interpret the charge deposition collected by the detectors as pixels in an image, which makes it an ideal case for the use of modern deep learning techniques, allowing for good performance classifers produced directly from low-level detector information.
AB - A major task in ground-based gamma-ray astrophysics analyses is to separate events caused by gamma rays from the overwhelming hadronic cosmic-ray background. In this talk we are interested in improving the gamma ray regime below 1 TeV, where the gamma and cosmic-ray separation becomes more difficult. Traditionally, the separation has been done in particle sampling arrays by selections on summary variables which distinguish features between the gamma and cosmic-ray air showers, though the distributions become more similar with lower energies. The structure of the HAWC observatory, however, makes it natural to interpret the charge deposition collected by the detectors as pixels in an image, which makes it an ideal case for the use of modern deep learning techniques, allowing for good performance classifers produced directly from low-level detector information.
UR - http://www.scopus.com/inward/record.url?scp=85123976487&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85123976487
SN - 1824-8039
VL - 395
JO - Proceedings of Science
JF - Proceedings of Science
M1 - 770
T2 - 37th International Cosmic Ray Conference, ICRC 2021
Y2 - 12 July 2021 through 23 July 2021
ER -