TY - JOUR
T1 - Critical risk factors associated with fatal/severe crash outcomes in personal mobility device rider at-fault crashes
T2 - A two-step inter-cluster rule mining technique
AU - Tamakloe, Reuben
AU - Zhang, Kaihan
AU - Hossain, Ahmed
AU - Kim, Inhi
AU - Park, Shin Hyoung
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/5
Y1 - 2024/5
N2 - Personal Mobility Devices (PMDs) have witnessed an extraordinary surge in popularity, emerging as a favored mode of urban transportation. This has sparked significant safety concerns, paralleled by a stark increase in PMD-involved crashes. Research indicates that PMD user behavior, especially in urban areas, is crucial in these crashes, underscoring the need for an extensive investigation into key factors, particularly those causing fatal/severe outcomes. Remarkably, there exists a noticeable gap in the research concerning the analysis of determinants behind fatal/severe PMD crashes, specifically in PMD rider-at-fault collisions. This study addresses this gap by identifying uniform groups of PMD rider-at-fault crashes and investigating cluster-specific key factor associations and determinants of fatal/severe crash outcomes using Seoul's PMD rider-at-fault crash data from 2017 to 2021. A comprehensive two-step framework, integrating Cluster Correspondence Analysis (CCA) and Association Rules Mining (ARM) techniques is employed to segment PMD rider-at-fault crash data into homogeneous groups, revealing unique risk factor patterns within each cluster and further exploring the combination of factors associated with fatal/severe PMD rider-at-fault crash outcomes. CCA revealed three distinct groups: PMD-vehicle, PMD-pedestrian, and single-PMD crashes. From the ARM, it was found that fatal/severe crashes were linked to dry road conditions, male PMD users, and weekdays, irrespective of the cluster. Whereas speeding violations and side collisions were associated with fatal/severe PMD-vehicle rider-at-fault crashes, traffic control violations were related to fatal/severe PMD-pedestrian rider-at-fault crashes at pedestrian crossings. Unsafe riding practices predominantly caused single-PMD crashes during daytime hours. From the findings, engineering improvements, awareness campaigns, education, and law enforcement actions are recommended. The new insights gleaned from this research provide a foundation for informed decision-making and the implementation of policies designed to enhance PMD safety.
AB - Personal Mobility Devices (PMDs) have witnessed an extraordinary surge in popularity, emerging as a favored mode of urban transportation. This has sparked significant safety concerns, paralleled by a stark increase in PMD-involved crashes. Research indicates that PMD user behavior, especially in urban areas, is crucial in these crashes, underscoring the need for an extensive investigation into key factors, particularly those causing fatal/severe outcomes. Remarkably, there exists a noticeable gap in the research concerning the analysis of determinants behind fatal/severe PMD crashes, specifically in PMD rider-at-fault collisions. This study addresses this gap by identifying uniform groups of PMD rider-at-fault crashes and investigating cluster-specific key factor associations and determinants of fatal/severe crash outcomes using Seoul's PMD rider-at-fault crash data from 2017 to 2021. A comprehensive two-step framework, integrating Cluster Correspondence Analysis (CCA) and Association Rules Mining (ARM) techniques is employed to segment PMD rider-at-fault crash data into homogeneous groups, revealing unique risk factor patterns within each cluster and further exploring the combination of factors associated with fatal/severe PMD rider-at-fault crash outcomes. CCA revealed three distinct groups: PMD-vehicle, PMD-pedestrian, and single-PMD crashes. From the ARM, it was found that fatal/severe crashes were linked to dry road conditions, male PMD users, and weekdays, irrespective of the cluster. Whereas speeding violations and side collisions were associated with fatal/severe PMD-vehicle rider-at-fault crashes, traffic control violations were related to fatal/severe PMD-pedestrian rider-at-fault crashes at pedestrian crossings. Unsafe riding practices predominantly caused single-PMD crashes during daytime hours. From the findings, engineering improvements, awareness campaigns, education, and law enforcement actions are recommended. The new insights gleaned from this research provide a foundation for informed decision-making and the implementation of policies designed to enhance PMD safety.
KW - ARM
KW - Cluster Correspondence Analysis
KW - Crash Severity
KW - Personal Mobility Device
KW - South Korea
UR - http://www.scopus.com/inward/record.url?scp=85186621826&partnerID=8YFLogxK
U2 - 10.1016/j.aap.2024.107527
DO - 10.1016/j.aap.2024.107527
M3 - Article
C2 - 38428242
AN - SCOPUS:85186621826
SN - 0001-4575
VL - 199
JO - Accident Analysis and Prevention
JF - Accident Analysis and Prevention
M1 - 107527
ER -