Cryptocurrency Price Forecasting using Variational Autoencoder with Versatile Quantile Modeling

Sungchul Hong, Seunghwan An, Jong June Jeon

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In recent years, there has been a growing interest in probabilistic forecasting methods that offer more comprehensive insights by considering prediction uncertainties rather than point estimates. This paper introduces a novel variational autoencoder learning framework for multivariate distributional forecasting. Our approach employs distributional learning to directly estimate the cumulative distribution function of future time series conditional distributions using the continuous ranked probability score. By incorporating a temporal structure within the latent space and utilizing versatile quantile models, such as the generalized lambda distribution, we enable distributional forecasting by generating synthetic time series data for future time points. To assess the effectiveness of our method, we conduct experiments using a multivariate dataset of real cryptocurrency prices, demonstrating its superiority in forecasting high-volatility scenarios.

Original languageEnglish
Title of host publicationCIKM 2024 - Proceedings of the 33rd ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages4530-4537
Number of pages8
ISBN (Electronic)9798400704369
DOIs
StatePublished - 21 Oct 2024
Event33rd ACM International Conference on Information and Knowledge Management, CIKM 2024 - Boise, United States
Duration: 21 Oct 202425 Oct 2024

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings
ISSN (Print)2155-0751

Conference

Conference33rd ACM International Conference on Information and Knowledge Management, CIKM 2024
Country/TerritoryUnited States
CityBoise
Period21/10/2425/10/24

Keywords

  • cryptocurrency forecasting
  • distributional learning
  • time series forecasting
  • variational autoencoder

Fingerprint

Dive into the research topics of 'Cryptocurrency Price Forecasting using Variational Autoencoder with Versatile Quantile Modeling'. Together they form a unique fingerprint.

Cite this