Degradation of a nano-thick Cu/Pt bilayered catalytic layer with an electrolyte in dye sensitized solar cells

Yunyoung Noh, Ohsung Song

Research output: Contribution to journalArticlepeer-review

Abstract

This study examined the stability of a Cu/Pt bilayered counter electrode (CE) with the electrolyte and the energy conversion efficiency of dye-sensitized solar cells using a 0.45 cm2 dye-sensitized solar cell (DSSC) device with a glass/FTO/blocking Iayer/Ti02/N719 (dye)/electrolyte/50 nm-Pt/50 nm-Cu/FTO/glass. For comparison, a 100 nm-thick Pt only CE DSSC was also prepared using the same method. The photovoltaic properties, such as the short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF), energy conversion efficiency (ECE), and impedance, were checked using a solar simulator and potentiostat with time after assembling the DSSC. The microstructure of the Cu/Pt bilayer was examined by optical microscopy after 0∼30 minutes and 3 weeks. The ECE of the DSSC using the Pt only CE was 4.60 %, which did not show any time dependence. On the other hand, for the Cu/Pt CE DSSC, the ECEs after 0 minutes, 30 minutes, and 3 weeks were 5.72%, 5.03%, and 1.36%, respectively. Moreover, the interface resistance increased; 6, 7, and 40 Ω at 0 minutes, 30 minutes, and 3 weeks, respectively. The corrosion area of the Cu/Pt CE determined by an optical microscopy after 0 minutes, 30 minutes, and 3 weeks was 0, 23.40, and 51.35%, respectively. These results confirmed that the ECE and catalytic activity of Cu/Pt CE decreased drastically with time. Therefore, a DSSC using a Cu/Pt CE may be superior to the Pt only CE immediately after integrating of the device, but the performance of the former degrades drastically with time.

Original languageEnglish
Pages (from-to)751-756
Number of pages6
JournalJournal of Korean Institute of Metals and Materials
Volume52
Issue number9
DOIs
StatePublished - 1 Sep 2014

Keywords

  • Bilayer
  • Optical properties
  • Solar cells
  • Solar simulator
  • Sputtering

Fingerprint

Dive into the research topics of 'Degradation of a nano-thick Cu/Pt bilayered catalytic layer with an electrolyte in dye sensitized solar cells'. Together they form a unique fingerprint.

Cite this