Abstract
In this study, a capacitorless one-transistor dynamic random-access memory (1T-DRAM) based on a polycrystalline silicon (Poly-Si) metal-oxide-semiconductor field-effect transistor (MOSFET) with a storage layer separated using a separation oxide was designed and analyzed using technology computer-aided design (TCAD). The channel and storage layers were separated using a separation oxide to improve the inferior retention time of the conventional 1T-DRAM, and we adopted the underlap structure to reduce Shockley-Read-Hall recombination. In addition, poly-Si, which has several advantages, including low manufacturing cost and availability of high-density three-dimensional (3D) memory arrays, is used to easily fabricate silicon-on-insulator (SOI)-like structures. Accordingly, we extracted memory performance by analyzing the effect of grain boundary (GB). The proposed 1T-DRAM achieved a sensing margin of 14.10 μA/μm and a retention time of 251 ms at T = 358 K, even in the existence of a GB.
Original language | English |
---|---|
Article number | 3365 |
Journal | Electronics (Switzerland) |
Volume | 11 |
Issue number | 20 |
DOIs | |
State | Published - Oct 2022 |
Keywords
- metal-oxide-semiconductor field-effect transistor
- one-transistor dynamic random-access memory
- polycrystalline silicon