TY - GEN
T1 - Design of millimeter wave hybrid beamforming systems
AU - Kwon, Girim
AU - Shim, Yeonggyu
AU - Park, Hyuncheol
AU - Kwon, Hyuck M.
N1 - Publisher Copyright:
© 2014 IEEE.
PY - 2014/11/24
Y1 - 2014/11/24
N2 - Millimeter wave (mmWave) signals experience a significant path-loss in free space. To overcome this weakness, a large number of antennas are needed to obtain a high beamforming gain. Although a large number of antennas can be implemented in small area due to the short wavelength, the digital beamforming techniques cannot be implemented easily due to the high complexity of hardwares. To solve this problem, the hybrid beamforming systems which have smaller number of radio frequency (RF) chains are proposed in the literature. Although the hybrid beamforming systems may achieve the spectral efficiencies of the digital beamforming systems closely, the spectral efficiency cannot be monotonically increase along with the number of data streams due to the limited scattering in mmWave channel. In this paper, we provide a guide for the design of mmWave hybrid beamforming systems. We find the optimal number of streams, and present the spectral efficiency achievable region in which the system guarantees the reliable communications with the lowest cost.
AB - Millimeter wave (mmWave) signals experience a significant path-loss in free space. To overcome this weakness, a large number of antennas are needed to obtain a high beamforming gain. Although a large number of antennas can be implemented in small area due to the short wavelength, the digital beamforming techniques cannot be implemented easily due to the high complexity of hardwares. To solve this problem, the hybrid beamforming systems which have smaller number of radio frequency (RF) chains are proposed in the literature. Although the hybrid beamforming systems may achieve the spectral efficiencies of the digital beamforming systems closely, the spectral efficiency cannot be monotonically increase along with the number of data streams due to the limited scattering in mmWave channel. In this paper, we provide a guide for the design of mmWave hybrid beamforming systems. We find the optimal number of streams, and present the spectral efficiency achievable region in which the system guarantees the reliable communications with the lowest cost.
UR - http://www.scopus.com/inward/record.url?scp=84919429887&partnerID=8YFLogxK
U2 - 10.1109/VTCFall.2014.6965933
DO - 10.1109/VTCFall.2014.6965933
M3 - Conference contribution
AN - SCOPUS:84919429887
T3 - IEEE Vehicular Technology Conference
BT - 2014 IEEE 80th Vehicular Technology Conference, VTC2014-Fall, Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 80th IEEE Vehicular Technology Conference, VTC 2014-Fall
Y2 - 14 September 2014 through 17 September 2014
ER -