Abstract
Power system disruptions can be categorized as issues with the quality of electricity brought on by voltage sags, lightning strikes, and other system-related interferences. The static transfer switch (STS) has recently emerged as the most important technology for electric power transmission, distribution, and control systems to manage power supply during power system disruption issues, particularly in cost-effectively supplying power to critical loads and sensitive loads without interruption. In this paper, for the switching between the two AC sources during the voltage disruptions issue with low transfer time, a smart static transfer switch (SSTS) based on a digital switching algorithm and Triac semiconductor switch is proposed and experimentally tested. A digital switching algorithm based on online AC voltage sensing and zero-crossing detection is proposed and implemented inside a DSP MCU. The printed circuit board (PCB) of the proposed SSTS is designed and manufactured for the experimental performance investigation with different AC input voltage conditions. A comparative study based on the advantages and disadvantages of the proposed SSTS system with the previous works is also presented. A smart static transfer switch with a transition time of less than one cycle and a digital protection technique during fault conditions is obtained in this work.
Original language | English |
---|---|
Article number | 526 |
Journal | Energies |
Volume | 16 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2023 |
Keywords
- AC power control
- Triac
- online AC voltage measurements
- smart static transfer switch (SSTS)
- switching algorithm
- transfer time
- zero-crossing detection