TY - JOUR
T1 - Development of AOP relevant to microplastics based on toxicity mechanisms of chemical additives using ToxCast™ and deep learning models combined approach
AU - Jeong, Jaeseong
AU - Choi, Jinhee
N1 - Publisher Copyright:
© 2020
PY - 2020/4
Y1 - 2020/4
N2 - Various additives are used in plastic products to improve the properties and the durability of the plastics. Their possible elution from the plastics when plastics are fragmented into micro- and nano-size in the environment is suspected to one of the major contributors to environmental and human toxicity of microplastics. In this context, to better understand the hazardous effect of microplastics, the toxicity of chemical additives was investigated. Fifty most common chemicals presented in plastics were selected as target additives. Their toxicity was systematically identified using apical and molecular toxicity databases, such as ChemIDplus and ToxCast™. Among the vast ToxCast assays, those having intended gene targets were selected for identification of the mechanism of toxicity of plastic additives. Deep learning artificial neural network models were further developed based on the ToxCast assays for the chemicals not tested in the ToxCast program. Using both the ToxCast database and deep learning models, active chemicals on each ToxCast assays were identified. Through correlation analysis between molecular targets from ToxCast and mammalian toxicity results from ChemIDplus, we identified the fifteen most relevant mechanisms of toxicity for the understanding mechanism of toxicity of plastic additives. They are neurotoxicity, inflammation, lipid metabolism, and cancer pathways. Based on these, along with, previously conducted systemic review on the mechanism of toxicity of microplastics, here we have proposed potential adverse outcome pathways (AOPs) relevant to microplastics pollution. This study also suggests in vivo and in vitro toxicity database and deep learning model combined approach is appropriate to provide insight into the toxicity mechanism of the broad range of environmental chemicals, such as plastic additives.
AB - Various additives are used in plastic products to improve the properties and the durability of the plastics. Their possible elution from the plastics when plastics are fragmented into micro- and nano-size in the environment is suspected to one of the major contributors to environmental and human toxicity of microplastics. In this context, to better understand the hazardous effect of microplastics, the toxicity of chemical additives was investigated. Fifty most common chemicals presented in plastics were selected as target additives. Their toxicity was systematically identified using apical and molecular toxicity databases, such as ChemIDplus and ToxCast™. Among the vast ToxCast assays, those having intended gene targets were selected for identification of the mechanism of toxicity of plastic additives. Deep learning artificial neural network models were further developed based on the ToxCast assays for the chemicals not tested in the ToxCast program. Using both the ToxCast database and deep learning models, active chemicals on each ToxCast assays were identified. Through correlation analysis between molecular targets from ToxCast and mammalian toxicity results from ChemIDplus, we identified the fifteen most relevant mechanisms of toxicity for the understanding mechanism of toxicity of plastic additives. They are neurotoxicity, inflammation, lipid metabolism, and cancer pathways. Based on these, along with, previously conducted systemic review on the mechanism of toxicity of microplastics, here we have proposed potential adverse outcome pathways (AOPs) relevant to microplastics pollution. This study also suggests in vivo and in vitro toxicity database and deep learning model combined approach is appropriate to provide insight into the toxicity mechanism of the broad range of environmental chemicals, such as plastic additives.
KW - Additives
KW - Adverse outcome pathway
KW - Deep learning
KW - Microplastics
KW - ToxCast
KW - Toxicity database
UR - http://www.scopus.com/inward/record.url?scp=85080838366&partnerID=8YFLogxK
U2 - 10.1016/j.envint.2020.105557
DO - 10.1016/j.envint.2020.105557
M3 - Article
C2 - 32078872
AN - SCOPUS:85080838366
SN - 0160-4120
VL - 137
JO - Environment International
JF - Environment International
M1 - 105557
ER -