Abstract
We herein report an enhancement of the thermoelectric performance of spark plasma sintered polycrystalline n-type Bi2Te2.7Se0.3 by the intercalation of Cu and the doping of Al on Bi-sites. Through the intercalation of a small amount of Cu (0.008), the reproducibility could be significantly improved, with ZT was enhanced from 0.64 to 0.73 at 300 K due to the reduced lattice thermal conductivity benefiting from intensified point-defect phonon scattering. We also found that Al is an effective doping element for power factor enhancement and for reducing the lattice thermal conductivity of Cu-intercalated Bi2Te2.7Se0.3. With these synergetic effects, an enhanced ZT values of 0.78 at 300 K and 0.81 at 360 K were obtained in 1 at% Al-doped Cu0.008Bi2Te2.7Se0.3 (Cu0.008Bi1.98Al0.02Te2.7Se0.3).
Original language | English |
---|---|
Pages (from-to) | 190-193 |
Number of pages | 4 |
Journal | Current Applied Physics |
Volume | 15 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2015 |
Keywords
- Doping
- Intercalation
- Lattice thermal conductivity
- Thermoelectric