Dynamic Inertia Response Support by Energy Storage System with Renewable Energy Integration Substation

Yeuntae Yoo, Seungmin Jung, Gilsoo Jang

Research output: Contribution to journalArticlepeer-review

52 Scopus citations

Abstract

In recent years, the expansion of renewable energy in electric power systems has been increasing at such a rapid pace that it has started affecting frequency stability. Renewable generators connected to the grid produce variable amounts of power, and in most cases have no inherent inertia response (IR) to the system frequency. Therefore, the high penetration of renewable generators in the system results in low inertia and frequency distortion. If renewable generators account for a high proportion of the supply in a power system, the use of energy storage systems (ESSs) with frequency-support algorithms (in the place of synchronous generators) can stabilize the network. The participation of ESSs in frequency support must be organized precisely, so that they are fully devoted to their own purpose. In this paper, the frequency-support parameters of ESSs are calculated for achieving stable frequency response from a network. An estimation and calibration process is conducted during the active power-order change of the ESSs in the substation, and is verified through electromagnetic-transients-including-DC (EMTDC)-based simulations.

Original languageEnglish
Article number8891059
Pages (from-to)260-266
Number of pages7
JournalJournal of Modern Power Systems and Clean Energy
Volume8
Issue number2
DOIs
StatePublished - Mar 2020

Keywords

  • Energy storage system (ESS)
  • frequency response
  • inertia
  • renewable energy substation

Fingerprint

Dive into the research topics of 'Dynamic Inertia Response Support by Energy Storage System with Renewable Energy Integration Substation'. Together they form a unique fingerprint.

Cite this