TY - JOUR
T1 - Effect of sulfidation and dissolved organic matters on toxicity of silver nanoparticles in sediment dwelling organism, Chironomus riparius
AU - Lee, Si Won
AU - Park, Sun Young
AU - Kim, Younghun
AU - Im, Hosub
AU - Choi, Jinhee
N1 - Publisher Copyright:
© 2016 Elsevier B.V.
PY - 2016/5/15
Y1 - 2016/5/15
N2 - The properties, fate, and toxicity of silver nanoparticles (AgNPs) are readily modified in the environment. Thus, in order to predict the environmental impact of AgNPs, the toxicity test should be conducted to assess the interactions of AgNPs with environmental matrices. Dissolved organic matter (DOM) is known to mitigate AgNPs toxicity in natural systems, and it is also known that silver binds strongly to sulfur. Little is known, however, about the effect of sulfidation and to what extent it could compete with DOM in the sediment. We therefore investigated the effect of sulfide on a sediment dwelling organism, Chironomus riparius using ecotoxicity endpoints. We then investigated how sulfide and a combination of sulfide and DOM affect the toxicity of AgNPs in C. riparius. We also monitored the concentrations of silver in the water and sediment compartments, as well as in C. riparius tissue, in the presence and absence of sulfide. Finally, in order to investigate how sulfide and DOM affect the release of ions from AgNPs, we also monitored released Ag+ in each treatment. In the presence of sulfide, AgNPs were found to be less toxic to C. riparius in acute and chronic endpoints than AgNPs alone, whereas DOM treatment did not modulate the toxicity of AgNPs. Sulfide treatment reduced the release of Ag+ from AgNPs. Water-spiked AgNPs with sulfide were found to be more slowly incorporated into both sediment and larvae as compared to the AgNP alone. Overall, the results suggest that the presence of sulfide in sediment mitigates the ecotoxicity of AgNPs in C. riparius.
AB - The properties, fate, and toxicity of silver nanoparticles (AgNPs) are readily modified in the environment. Thus, in order to predict the environmental impact of AgNPs, the toxicity test should be conducted to assess the interactions of AgNPs with environmental matrices. Dissolved organic matter (DOM) is known to mitigate AgNPs toxicity in natural systems, and it is also known that silver binds strongly to sulfur. Little is known, however, about the effect of sulfidation and to what extent it could compete with DOM in the sediment. We therefore investigated the effect of sulfide on a sediment dwelling organism, Chironomus riparius using ecotoxicity endpoints. We then investigated how sulfide and a combination of sulfide and DOM affect the toxicity of AgNPs in C. riparius. We also monitored the concentrations of silver in the water and sediment compartments, as well as in C. riparius tissue, in the presence and absence of sulfide. Finally, in order to investigate how sulfide and DOM affect the release of ions from AgNPs, we also monitored released Ag+ in each treatment. In the presence of sulfide, AgNPs were found to be less toxic to C. riparius in acute and chronic endpoints than AgNPs alone, whereas DOM treatment did not modulate the toxicity of AgNPs. Sulfide treatment reduced the release of Ag+ from AgNPs. Water-spiked AgNPs with sulfide were found to be more slowly incorporated into both sediment and larvae as compared to the AgNP alone. Overall, the results suggest that the presence of sulfide in sediment mitigates the ecotoxicity of AgNPs in C. riparius.
KW - Chironomus riparius
KW - Dissolved organic matter
KW - Sediment
KW - Silver nanoparticles
KW - Sulfide
UR - http://www.scopus.com/inward/record.url?scp=84960870388&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2016.02.064
DO - 10.1016/j.scitotenv.2016.02.064
M3 - Article
C2 - 26938319
AN - SCOPUS:84960870388
SN - 0048-9697
VL - 553
SP - 565
EP - 573
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -