Abstract
Background: Alzheimer's disease is a neurodegenerative brain disease resulting from the deterioration of neuronal cells and vascular dementia, the latter of which results from cerebrovascular disorders. Exercise is effective in preventing and treating degenerative brain diseases as it activates blood flow to the brain, increases nerve production in the hippocampus, and promotes the expression of synaptic plasticity-related proteins. Therefore, this study investigated the effects of 16-week aquatic and land-based exercise programs on amyloid beta (Aβ), heat shock protein (HSP) 27 levels, and pulse wave velocity (PWV). Materials and methods: Forty elderly women, aged 60–70 years, voluntarily participated in the study. They were divided into control (n = 12), aquatic exercise (n = 14), and land-based exercise groups (n = 14). The variables of amyloid beta, heat shock protein 27, and pulse wave velocity were measured in all the participants before and after the 16-week study. Results: Significantly higher levels of serum HSP27 (p < 0.05) and significantly lower levels of vascular elasticity (p < 0.05) were found in the aquatic exercise group after 16 weeks of exercise compared with the control group. Aβ did not significantly differ between groups. Thirty minutes after the first exercise, Aβ in the aquatic exercise group (p < 0.01) and HSP27 in the land-based exercise group (p < 0.05) were significantly higher than the corresponding levels in the resting condition before exercise. 30 min after the last exercise, Aβ (p < 0.01) and HSP27 (p < 0.05) were significantly higher. Conclusions: Aquatic and land-based exercises increased serum Aβ and HSP27 and decreased pulse wave velocity. Thus, they may play a positive role in the prevention of degenerative brain diseases and improvement of brain function in elderly people.
Original language | English |
---|---|
Pages (from-to) | 62-68 |
Number of pages | 7 |
Journal | Experimental Gerontology |
Volume | 108 |
DOIs | |
State | Published - 15 Jul 2018 |
Keywords
- Amyloid beta
- Aquatic exercise
- Heat shock protein 27
- Land-based exercise
- Pulse wave velocity