Abstract
The conventional impregnation method was used to prepare 15 wt% Mn-supported catalysts, which were applied to the catalytic oxidation of volatile organic compounds (VOCs; toluene, benzene, and o-xylene). The effects of calcination temperatures in the range of 500-900 °C and supports (γ-Al2O3, SiO2, and TiO2) on the property and performance of 15 wt% Mn-supported catalysts were investigated. Their physicochemical characteristics were analyzed by the BET, XRD, NH3-TPD, H2-TPR, and XPS. The calcination temperature greatly affected the crystalline structure and O1s D (defect oxides)/O1s L (lattice oxides) area ratio of the 15 wt% Mn/γ-Al2O3 (15 Mn/Al) catalyst. The order of the O1s D/O1s L area ratios of the 15 Mn/Al catalysts with respect to calcination temperature was 900 > 500 > 700 °C, which was in good agreement with that observed for the catalytic activity. In addition, the activity order of the 15 wt% Mn-supported catalysts with respect to the type of support was γ-Al2O3 > SiO2 > TiO2. The 15 wt% Mn/Al catalyst, which had a higher O1s D/O1s L area ratio, showed better activity than the 15 wt% Mn/SiO2 (15 Mn/Si) and 15 wt% Mn/TiO2 (15 Mn/Ti) catalysts. Defect oxides played a significant role in the catalytic oxidation of VOCs. The catalytic activity with respect to the type of VOC decreased in the order of benzene > toluene > o-xylene.
Original language | English |
---|---|
Pages (from-to) | 185-199 |
Number of pages | 15 |
Journal | Research on Chemical Intermediates |
Volume | 42 |
Issue number | 1 |
DOIs | |
State | Published - 1 Jan 2016 |
Keywords
- Calcination temperature
- Catalytic oxidation
- Manganese
- Support
- Volatile organic compounds