Electronic structure of graphene on single-crystal copper substrates

Andrew L. Walter, Shu Nie, Aaron Bostwick, Keun Su Kim, Luca Moreschini, Young Jun Chang, Davide Innocenti, Karsten Horn, Kevin F. McCarty, Eli Rotenberg

Research output: Contribution to journalArticlepeer-review

157 Scopus citations

Abstract

The electronic structure of graphene on Cu(111) and Cu(100) single crystals is investigated using low-energy electron microscopy, low-energy electron diffraction, and angle-resolved photoemission spectroscopy. On both substrates the graphene is rotationally disordered and interactions between the graphene and substrate lead to a shift in the Dirac crossing of ∼-0.3 eV and the opening of a ∼250 meV gap. Exposure of the samples to air resulted in intercalation of oxygen under the graphene on Cu(100), which formed a (√2×2√2)R45o superstructure. The effect of this intercalation on the graphene π bands is to increase the offset of the Dirac crossing (∼-0.6 eV) and enlarge the gap (∼350 meV). No such effect is observed for the graphene on the Cu(111) sample, with the surface state at Γ not showing the gap associated with a surface superstructure. The graphene film is found to protect the surface state from air exposure, with no change in the effective mass observed, as for one monolayer of Ag on Cu(111).

Original languageEnglish
Article number195443
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume84
Issue number19
DOIs
StatePublished - 9 Nov 2011

Fingerprint

Dive into the research topics of 'Electronic structure of graphene on single-crystal copper substrates'. Together they form a unique fingerprint.

Cite this