TY - JOUR
T1 - Electrophoresis Characterization of Nanoplastic Particle Surface Charge in Dilute Aqueous Electrolytes
AU - Lin, Jui Yen
AU - Lee, Ingyu
AU - Feng, Cuijuan
AU - Kim, Hyunook
AU - Huang, Chin Pao
N1 - Publisher Copyright:
© Mary Ann Liebert, Inc.
PY - 2024
Y1 - 2024
N2 - Aggregation, adsorption, and biofilm formation are involved in the fate and transport of nanoplastics in the aquatic environment. These interfacial processes are closely related to surface charge and electrical double layer (EDL) structure. As it is experimentally difficult to obtain surface potential, laser doppler electrophoresis is currently the most popular technique to measure zeta potential, or the potential at shear plane. However, the determination of zeta potential by laser doppler electrophoresis is not a trivial undertaking. Inaccurate zeta potential values could potentially lead to misleading conclusions. This study aims to present a comprehensive method tailored for nanoplastics to accurately measure zeta potential and convert it to surface charge and potential with classical EDL theory. The effect of particle size and number concentration on zeta potential measurement was investigated using monodisperse polystyrene (PS) latex. An optimal number concentration was between 1010 and 1012 #/L to generate sufficient scattered light with minimal interparticle interaction. Six nanoplastics were synthesized from major polymers to acquire the zeta potential at various pH, including low-density polyethylene, high-density polyethylene, polypropylene, PS, polyvinyl chloride, and polyethylene terephthalate. Based on classical EDL theory, the zeta potential measured at various ionic strength was converted to surface potential, revealing that the shear plane was 0.4 to 2.1 nm away from the surface. Finally, the surface charge density of nanoplastics was acquired, which is essential to describe interfacial processes of nanoplastics in the environment.
AB - Aggregation, adsorption, and biofilm formation are involved in the fate and transport of nanoplastics in the aquatic environment. These interfacial processes are closely related to surface charge and electrical double layer (EDL) structure. As it is experimentally difficult to obtain surface potential, laser doppler electrophoresis is currently the most popular technique to measure zeta potential, or the potential at shear plane. However, the determination of zeta potential by laser doppler electrophoresis is not a trivial undertaking. Inaccurate zeta potential values could potentially lead to misleading conclusions. This study aims to present a comprehensive method tailored for nanoplastics to accurately measure zeta potential and convert it to surface charge and potential with classical EDL theory. The effect of particle size and number concentration on zeta potential measurement was investigated using monodisperse polystyrene (PS) latex. An optimal number concentration was between 1010 and 1012 #/L to generate sufficient scattered light with minimal interparticle interaction. Six nanoplastics were synthesized from major polymers to acquire the zeta potential at various pH, including low-density polyethylene, high-density polyethylene, polypropylene, PS, polyvinyl chloride, and polyethylene terephthalate. Based on classical EDL theory, the zeta potential measured at various ionic strength was converted to surface potential, revealing that the shear plane was 0.4 to 2.1 nm away from the surface. Finally, the surface charge density of nanoplastics was acquired, which is essential to describe interfacial processes of nanoplastics in the environment.
KW - electrical double layer
KW - electrophoresis
KW - microplastics
KW - PS latex
KW - scattering
UR - http://www.scopus.com/inward/record.url?scp=85198641729&partnerID=8YFLogxK
U2 - 10.1089/ees.2024.0076
DO - 10.1089/ees.2024.0076
M3 - Article
AN - SCOPUS:85198641729
SN - 1092-8758
JO - Environmental Engineering Science
JF - Environmental Engineering Science
ER -