TY - JOUR
T1 - Elucidating degradation mechanisms of mixed cation formamidinium-based perovskite solar cells under device operation conditions
AU - Joo Yang, Seok
AU - Jin, Haedam
AU - Cha, Jeongbeom
AU - Kyong Kim, Mi
AU - Baek, Dohun
AU - Na, Hyemi
AU - Kim, Min
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2023/3/1
Y1 - 2023/3/1
N2 - Organic cation-based metal halide perovskites suffer from volatile material decomposition, and the approach to ensure stability under device operation conditions is still far from commercialization. Formamidinium (FA)-based perovskite solar cells (PeSCs) have been widely used, showing efficient power conversion efficiencies (PCEs). Despite the high PCE, FA-based perovskites lack stability, but the related degradation mechanisms are quite indefinite. In this study, we compared two different systems by introduction of inorganic and organic cations to increase FA-based perovskite stability. To relate the device operational stability, we exposed the mixed cation perovskite films under 1 sun illumination at 60 °C in ambient air and investigated the difference in the phase transition of inorganic-mixed and organic-mixed FA perovskites. Morphological and structural characterizations were collected to confirm that the type of the secondary cation plays a major role in determining whether perovskite degradation is triggered at the grain boundary or perovskite grain surfaces. Although the PCEs of the two device systems are similar, the degradation mechanisms varied significantly depending on the chemical properties of perovskite components.
AB - Organic cation-based metal halide perovskites suffer from volatile material decomposition, and the approach to ensure stability under device operation conditions is still far from commercialization. Formamidinium (FA)-based perovskite solar cells (PeSCs) have been widely used, showing efficient power conversion efficiencies (PCEs). Despite the high PCE, FA-based perovskites lack stability, but the related degradation mechanisms are quite indefinite. In this study, we compared two different systems by introduction of inorganic and organic cations to increase FA-based perovskite stability. To relate the device operational stability, we exposed the mixed cation perovskite films under 1 sun illumination at 60 °C in ambient air and investigated the difference in the phase transition of inorganic-mixed and organic-mixed FA perovskites. Morphological and structural characterizations were collected to confirm that the type of the secondary cation plays a major role in determining whether perovskite degradation is triggered at the grain boundary or perovskite grain surfaces. Although the PCEs of the two device systems are similar, the degradation mechanisms varied significantly depending on the chemical properties of perovskite components.
UR - https://www.scopus.com/pages/publications/85143760109
U2 - 10.1016/j.apsusc.2022.155805
DO - 10.1016/j.apsusc.2022.155805
M3 - Article
AN - SCOPUS:85143760109
SN - 0169-4332
VL - 612
JO - Applied Surface Science
JF - Applied Surface Science
M1 - 155805
ER -