Energy Minimization in Reconfigurable Intelligent Surface-Assisted Unmanned Aerial Vehicle-Enabled Wireless Powered Mobile Edge Computing Systems with Rate-Splitting Multiple Access

Jihyung Kim, Eunhye Hong, Jaemin Jung, Jinkyu Kang, Seongah Jeong

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

In this study, a reconfigurable intelligent surface (RIS)-assisted wireless-powered mobile edge computing (WP-MEC) system is proposed, where a single-antenna unmanned aerial vehicle (UAV)-mounted cloudlet provides offloading opportunities to K user equipments (UEs) with a single antenna, and the K UEs can harvest the energy from the broadcast radio-frequency signals of the UAV. In addition, rate-splitting multiple access is used to provide offloading opportunities to multiple UEs for effective power control and high spectral efficiency. The aim of this paper is to minimize the total energy consumption by jointly optimizing the resource allocation in terms of time, power, computing frequency, and task load, along with the UAV trajectory and RIS phase-shift matrix. Since coupling issues between optimization variable designs are caused, however, an alternating optimization-based algorithm is developed. The performance of the proposed algorithm is verified via simulations and compared with the benchmark schemes of partial optimizations of resource allocation, path planning, and RIS phase design. The proposed algorithm exhibits high performance in WP-MEC systems with insufficient resources, e.g., achieving up to 40% energy reduction for a UAV with eight elements of RIS.

Original languageEnglish
Article number688
JournalDrones
Volume7
Issue number12
DOIs
StatePublished - Dec 2023

Keywords

  • mobile edge computing
  • offloading
  • rate-splitting multiple access
  • reconfigurable intelligent surfaces
  • unmanned aerial vehicle
  • wireless energy transfer

Fingerprint

Dive into the research topics of 'Energy Minimization in Reconfigurable Intelligent Surface-Assisted Unmanned Aerial Vehicle-Enabled Wireless Powered Mobile Edge Computing Systems with Rate-Splitting Multiple Access'. Together they form a unique fingerprint.

Cite this