Abstract
Enhanced performance of n-channel organic field-effect transistors (OFETs) is demonstrated by introducing a titanium sub-oxide (TiOx) injection layer. The n-channel OFETs utilize [6,6]-phenyl-C61 butyric acid methyl ester (PC61BM) or [6,6]-phenyl-C71 butyric acid methyl ester (PC71BM) as the semiconductor in the channel. With the TiO x injection layer, the electron mobilities of PC61BM and PC71BM FET using Al as source/drain electrodes are comparable to those obtained from OFETs using Ca as the source/drain electrodes. Direct measurement of contact resistance (Rc) shows significantly decreased Rc values for FETs with the TiOx layer. Ultraviolet photoelectron spectroscopy (UPS) studies demonstrate that the TiOx layer reduces the electron injection barrier because of the relatively strong interfacial dipole of TiOx. In addition to functioning as an electron injection layer that eliminates the contact resistance, the TiOx layer acts as a passivation layer that prevents penetration of O2 and H 2O; devices with the TiOx injection layer exhibit a significant improvement in lifetime when exposed to air.
Original language | English |
---|---|
Pages (from-to) | 1459-1464 |
Number of pages | 6 |
Journal | Advanced Functional Materials |
Volume | 19 |
Issue number | 9 |
DOIs | |
State | Published - 8 May 2009 |