Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature

Li Tang, Suk Yoon Kwon, Sun Hyung Kim, Jin Seog Kim, Jung Sup Choi, Kwang Yun Cho, Chang K. Sung, Sang Soo Kwak, Haeng Soon Lee

Research output: Contribution to journalArticlepeer-review

190 Scopus citations

Abstract

Oxidative stress is a major damaging factor for plants exposed to environmental stresses. In order to develop transgenic potato plants with enhanced tolerance to environmental stress, the genes of both Cu/Zn superoxide dismutase and ascorbate peroxidase were expressed in chloroplasts under the control of an oxidative stress-inducible SWPA2 promoter (referred to as SSA plants). SSA plants showed enhanced tolerance to 250 μM methyl viologen, and visible damage in SSA plants was one-fourth that of non-transgenic (NT) plants that were almost destroyed. In addition, when SSA plants were treated with a high temperature of 42°C for 20 h, the photosynthetic activity of SSA plants decreased by only 6%, whereas that of NT plants decreased by 29%. These results suggest that the manipulation of the antioxidative mechanism of the chloroplasts may be applied in the development of industrial transgenic crop plants with increased tolerance to multiple environmental stresses.

Original languageEnglish
Pages (from-to)1380-1386
Number of pages7
JournalPlant Cell Reports
Volume25
Issue number12
DOIs
StatePublished - Dec 2006

Keywords

  • Antioxidant enzyme
  • Environmental stress
  • Molecular breeding
  • Potato
  • Transgenic plant

Fingerprint

Dive into the research topics of 'Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature'. Together they form a unique fingerprint.

Cite this