Abstract
Electronic and optical properties of strain-compensated InGaN/InGaN/MgZnO quantum well (QW) structures using a MgZnO substrate are investigated using the multiband effective mass theory. A strain-compensated InGaN/InGaN/MgZnO QW structure with a larger strain shows larger matrix element than that with a smaller strain. The spontaneous emission peak rapidly increases with increasing compressive strain because the matrix element is enhanced for the strain-compensated QW structure with a larger strain. In addition, we find that the strain-compensated QW structure with the larger Mg composition in the substrate has greater spontaneous emission peak than the strain-compensated QW structure with the smaller Mg composition in the substrate.
Original language | English |
---|---|
Article number | 121107 |
Journal | Applied Physics Letters |
Volume | 97 |
Issue number | 12 |
DOIs | |
State | Published - 20 Sep 2010 |