Enhancing the Durability and Carrier Selectivity of Perovskite Solar Cells Using a Blend Interlayer

Dong Hun Sin, Sae Byeok Jo, Seung Goo Lee, Hyomin Ko, Min Kim, Hansol Lee, Kilwon Cho

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

A mechanically and thermally stable and electron-selective ZnO/CH3NH3PbI3 interface is created via hybridization of a polar insulating polymer, poly(ethylene glycol) (PEG), into ZnO nanoparticles (NPs). PEG successfully passivates the oxygen defects on ZnO and prevents direct contact between CH3NH3PbI3 and defects on ZnO. A uniform CH3NH3PbI3 film is formed on a soft ZnO:PEG layer after dispersion of the residual stress from the volume expansion during CH3NH3PbI3 conversion. PEG also increases the work of adhesion of the CH3NH3PbI3 film on the ZnO:PEG layer and holds the CH3NH3PbI3 film with hydrogen bonding. Furthermore, PEG tailors the interfacial electronic structure of ZnO, reducing the electron affinity of ZnO. As a result, a selective electron-collection cathode is formed with a reduced electron affinity and a deep-lying valence band of ZnO, which significantly enhances the carrier lifetime (473 μs) and photovoltaic performance (15.5%). The mechanically and electrically durable ZnO:PEG/CH3NH3PbI3 interface maintains the sustainable performance of the solar cells over 1 year. A soft and durable cathodic interface via PEG hybridization in a ZnO layer is an effective strategy toward flexible electronics and commercialization of the perovskite solar cells.

Original languageEnglish
Pages (from-to)18103-18112
Number of pages10
JournalACS Applied Materials and Interfaces
Volume9
Issue number21
DOIs
StatePublished - 31 May 2017

Keywords

  • adhesive interface
  • durable interface
  • electron-selective interface
  • perovskite solar cells
  • ZnO:PEG blend

Fingerprint

Dive into the research topics of 'Enhancing the Durability and Carrier Selectivity of Perovskite Solar Cells Using a Blend Interlayer'. Together they form a unique fingerprint.

Cite this