Abstract
This paper presents a label-free biosensor for the detection of single-stranded pathogen DNA through the target-enhanced gelation between gold nanowires (AuNW) and the primer DNAs branched on AuNW. The target DNA enables circularization of the linear DNA template, and the primer DNA is elongated continuously via rolling circle amplification. As a result, in the presence of the target DNA, a macroscopic hydrogel was fabricated by the entanglement of the elongated DNA with AuNWs as a scaffold fiber for effective gelation. In contrast, very small separate particles were generated in the absence of the target DNA. This label-free biosensor might be a promising tool for the detection of pathogen DNAs without any devices for further analysis. Moreover, the biosensor based on the weaving of AuNW and DNAs suggests a novel direction for the applications of AuNWs in biological engineering.
Original language | English |
---|---|
Pages (from-to) | 13653-13660 |
Number of pages | 8 |
Journal | International Journal of Molecular Sciences |
Volume | 16 |
Issue number | 6 |
DOIs | |
State | Published - 15 Jun 2015 |
Keywords
- Biosensor
- Gold nanowire
- Label-free
- Pathogen DNA detection
- Rolling circle amplification (RCA)