TY - JOUR
T1 - Exploring the Benefits of Training Expert Language Models over Instruction Tuning
AU - Jang, Joel
AU - Kim, Seungone
AU - Ye, Seonghyeon
AU - Kim, Doyoung
AU - Logeswaran, Lajanugen
AU - Lee, Moontae
AU - Lee, Kyungjae
AU - Seo, Minjoon
N1 - Publisher Copyright:
© 2023 Proceedings of Machine Learning Research. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Recently, Language Models (LMs) instruction-tuned on multiple tasks, also known as multitask-prompted fine-tuning (MT), have shown the capability to generalize to unseen tasks. Previous work has shown that scaling the number of training tasks is the key component in making stronger MT LMs. In this work, we report an unexpected finding that an expert LM fine-tuned on just a single task can outperform an MT LM trained with 300+ different tasks on 11 different unseen datasets and on 13 datasets of the BIG-bench benchmark by a mean accuracy of 3.20% and 1.29%, respectively. This finding casts doubt on the previously held belief that simply scaling the number of tasks makes stronger MT LMs. Leveraging this finding, we further show that this distributed approach of training a separate expert LM per training task instead of a single MT LM for zero-shot inference possesses many benefits including (1) avoiding negative task transfer that often occurs during instruction tuning, (2) being able to continually learn new tasks without having to re-train on previous tasks to avoid catastrophic forgetting, and (3) showing compositional capabilities when merging individual experts together. The code is available at https://github.com/joeljang/ELM.
AB - Recently, Language Models (LMs) instruction-tuned on multiple tasks, also known as multitask-prompted fine-tuning (MT), have shown the capability to generalize to unseen tasks. Previous work has shown that scaling the number of training tasks is the key component in making stronger MT LMs. In this work, we report an unexpected finding that an expert LM fine-tuned on just a single task can outperform an MT LM trained with 300+ different tasks on 11 different unseen datasets and on 13 datasets of the BIG-bench benchmark by a mean accuracy of 3.20% and 1.29%, respectively. This finding casts doubt on the previously held belief that simply scaling the number of tasks makes stronger MT LMs. Leveraging this finding, we further show that this distributed approach of training a separate expert LM per training task instead of a single MT LM for zero-shot inference possesses many benefits including (1) avoiding negative task transfer that often occurs during instruction tuning, (2) being able to continually learn new tasks without having to re-train on previous tasks to avoid catastrophic forgetting, and (3) showing compositional capabilities when merging individual experts together. The code is available at https://github.com/joeljang/ELM.
UR - http://www.scopus.com/inward/record.url?scp=85174386154&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85174386154
SN - 2640-3498
VL - 202
SP - 14702
EP - 14729
JO - Proceedings of Machine Learning Research
JF - Proceedings of Machine Learning Research
T2 - 40th International Conference on Machine Learning, ICML 2023
Y2 - 23 July 2023 through 29 July 2023
ER -