Abstract
Antimony telluride thin films display intrinsic thermoelectric properties at room temperature, although their Seebeck coefficients and electrical conductivities may be unsatisfactory. To address these issues, we designed composite films containing upper and lower Sb2Te3 layers encasing conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)-polyvinylpyrrolidone(PVP) nanowires. Thermoelectric Sb2Te3/PEDOT:PSS-PVP/Sb2Te3(ED) (STPPST) hybrid composite films were prepared by a multi-step coating process involving sputtering, electrospinning, and electrodeposition stages. The STPPST hybrid composites were characterized by field-emission scanning electron microscopy, X-ray diffraction, ultraviolet photoelectron spectroscopy, and infrared spectroscopy. The thermoelectric performance of the prepared STPPST hybrid composites, evaluated in terms of the power factor, electrical conductivity and Seebeck coefficient, demonstrated enhanced thermoelectric efficiency over a reference Sb2Te3 film. The performance of the composite Sb2Te3/PEDOT:PSS-PVP/Sb2Te3 film was greatly enhanced, with σ = 365 S/cm, S = 124 µV/K, and a power factor 563 µW/mK.
Original language | English |
---|---|
Article number | 2835 |
Pages (from-to) | 1-10 |
Number of pages | 10 |
Journal | Materials |
Volume | 13 |
Issue number | 12 |
DOIs | |
State | Published - 2 Jun 2020 |
Keywords
- Carrier filtering effect
- PEDOT:PSS
- SbTe
- Thermoelectric