TY - JOUR
T1 - Forecasting multiple-period freeway link travel times using modular neural networks
AU - Park, Dongjoo
AU - Rilett, Laurence R.
PY - 1998
Y1 - 1998
N2 - With the advent of route guidance systems (RGS), the prediction of short-term link travel times has become increasingly important. For RGS to be successful, the calculated routes should be based on not only historical and real-time link travel time information but also anticipatory link travel time information. An examination is conducted on how real-time information gathered as part of intelligent transportation systems can be used to predict link travel times for one through five time periods (of 5 minutes' duration). The methodology developed consists of two steps. First, the historical link travel times are classified based on an unsupervised clustering technique. Second, an individual or modular artificial neural network (ANN) is calibrated for each class, and each modular ANN is then used to predict link travel times. Actual link travel times from Houston, Texas, collected as part of the automatic vehicle identification system of the Houston Transtar system were used as a test bed. It was found that the modular ANN outperformed a conventional singular ANN. The results of the best modular ANN were compared with existing link travel time techniques, including a Kalman filtering model, an exponential smoothing model, a historical profile, and a real-time profile, and it was found that the modular ANN gave the best overall results.
AB - With the advent of route guidance systems (RGS), the prediction of short-term link travel times has become increasingly important. For RGS to be successful, the calculated routes should be based on not only historical and real-time link travel time information but also anticipatory link travel time information. An examination is conducted on how real-time information gathered as part of intelligent transportation systems can be used to predict link travel times for one through five time periods (of 5 minutes' duration). The methodology developed consists of two steps. First, the historical link travel times are classified based on an unsupervised clustering technique. Second, an individual or modular artificial neural network (ANN) is calibrated for each class, and each modular ANN is then used to predict link travel times. Actual link travel times from Houston, Texas, collected as part of the automatic vehicle identification system of the Houston Transtar system were used as a test bed. It was found that the modular ANN outperformed a conventional singular ANN. The results of the best modular ANN were compared with existing link travel time techniques, including a Kalman filtering model, an exponential smoothing model, a historical profile, and a real-time profile, and it was found that the modular ANN gave the best overall results.
UR - http://www.scopus.com/inward/record.url?scp=0032155636&partnerID=8YFLogxK
U2 - 10.3141/1617-23
DO - 10.3141/1617-23
M3 - Article
AN - SCOPUS:0032155636
SN - 0361-1981
SP - 163
EP - 170
JO - Transportation Research Record
JF - Transportation Research Record
IS - 1617
ER -