TY - JOUR
T1 - Genetic diversity assessment and genome-wide association study reveal candidate genes associated with component traits in sweet potato (Ipomoea batatas (L.) Lam)
AU - Nie, Hualin
AU - Park, Hyungjun
AU - Kim, Sujung
AU - Kim, Doyeon
AU - Kim, Seungill
AU - Kwon, Suk Yoon
AU - Kim, Sun Hyung
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2023/5
Y1 - 2023/5
N2 - The Korean sweet potatoes were bred by various cultivars introduced from Japanese, American, Porto Rico, China, and Burundi. This issue enriched their genetic diversity but also resulted in a mixture of cultivars. For genotyping, we collected and sequenced 66 sweet potato germplasms from different localities around Korea, including 36 modern cultivars, 5 local cultivars, and 25 foreign cultivars. This identified 447.6 million trimmed reads and 324.8 million mapping reads and provided 39,424 single nucleotide polymorphisms (SNPs) markers. Phylogenetic clustering and population structure analysis distinctly classified these germplasms into 5 genetic groups, group 1, group 2, group 3, group 4, and group 5, containing 20, 15, 10, 7, and 14 accessions, respectively. Sixty-three significant SNPs were selected by genome-wide association for sugar composition-related traits (fructose, glucose, and total sugars), total starch, amylose content, and total carotenoid of the storage root. A total of 37 candidate genes encompassing these significant SNPs were identified, among which, 7 genes were annotated to involve in sugar and starch metabolism, including galactose metabolism (itf04g30630), starch and sucrose metabolism (itf03g13270, itf15g09320), carbohydrate metabolism (itf14g10250), carbohydrate and amino acid metabolism (itf12g19270), and amino sugar and nucleotide sugar metabolism (itf03g21950, itf15g04880). This results indicated that sugar and starch are important characteristics to determine the genetic diversity of sweet potatoes. These findings not only illustrate the importance of component traits to genotyping sweet potatoes but also explain an important reason resulting in genetic diversity of sweet potato.
AB - The Korean sweet potatoes were bred by various cultivars introduced from Japanese, American, Porto Rico, China, and Burundi. This issue enriched their genetic diversity but also resulted in a mixture of cultivars. For genotyping, we collected and sequenced 66 sweet potato germplasms from different localities around Korea, including 36 modern cultivars, 5 local cultivars, and 25 foreign cultivars. This identified 447.6 million trimmed reads and 324.8 million mapping reads and provided 39,424 single nucleotide polymorphisms (SNPs) markers. Phylogenetic clustering and population structure analysis distinctly classified these germplasms into 5 genetic groups, group 1, group 2, group 3, group 4, and group 5, containing 20, 15, 10, 7, and 14 accessions, respectively. Sixty-three significant SNPs were selected by genome-wide association for sugar composition-related traits (fructose, glucose, and total sugars), total starch, amylose content, and total carotenoid of the storage root. A total of 37 candidate genes encompassing these significant SNPs were identified, among which, 7 genes were annotated to involve in sugar and starch metabolism, including galactose metabolism (itf04g30630), starch and sucrose metabolism (itf03g13270, itf15g09320), carbohydrate metabolism (itf14g10250), carbohydrate and amino acid metabolism (itf12g19270), and amino sugar and nucleotide sugar metabolism (itf03g21950, itf15g04880). This results indicated that sugar and starch are important characteristics to determine the genetic diversity of sweet potatoes. These findings not only illustrate the importance of component traits to genotyping sweet potatoes but also explain an important reason resulting in genetic diversity of sweet potato.
KW - Component traits
KW - Genetic diversity
KW - Genome-wide association
KW - SNP markers
KW - Sweet potato
UR - http://www.scopus.com/inward/record.url?scp=85150502543&partnerID=8YFLogxK
U2 - 10.1007/s00438-023-02007-3
DO - 10.1007/s00438-023-02007-3
M3 - Article
C2 - 36943475
AN - SCOPUS:85150502543
SN - 1617-4615
VL - 298
SP - 653
EP - 667
JO - Molecular Genetics and Genomics
JF - Molecular Genetics and Genomics
IS - 3
ER -